New Interconnects

Moderator:
Doug Voigt, Distinguished Technologist, HPE
Three Consortia Formed in Oct 2016

CCIX

OpenCAPI

GEN Z
Cache Coherent Interface for Accelerators (CCIX)

David Koenen, Arm
CCIX™ cache coherent interconnect for accelerators

- **New class of interconnect for accelerated applications**

- **Mission of the CCIX Consortium is to develop and promote adoption of an industry standard specification to enable coherent interconnect technologies between general-purpose processors and acceleration devices for efficient heterogeneous computing.**

https://www.ccixconsortium.com/
CCIX Consortium Inc

- Formed January 2016, incorporated in February 2017
- Complete ecosystem with 42 members and growing
- Hardware specification available for design starts for member companies
- CCIX pronounced: (c’ siks)
System topology examples

Direct attached, daisy chain, mesh and switched topologies
CCIX SoC to NVM Slave device

Arm SoC

3rd party PCIe/CCIX IP

CML

CXS

XP

AXI

16 Lanes

PHY (up to 25Gbps)

Data Link Layer

CCIX Transaction Layer

PCIe Transaction Layer

DDR4-MC

SCM/NVM

PMEM/NVMe Media Cntrl

PCle Transaction Layer

CCIX Transaction Layer

Data Link Layer

PHY (up to 25Gbps)
Shared Virtual Memory (Driverless) model used by CCIX

- CCIX capable devices behave similarly to nodes in existing NUMA systems
 - Memory based approach leverages existing Operating System capabilities
 - Enabled by coherent shared virtual memory – it's all “just memory”

- Dual mode CCIX/PCIe devices leverage PCIe Pins, Traces, Connector, and discovery

- Minimal OS changes required, mostly for optional/enhanced capabilities
 - E.G. one OS driver for power management, firmware-first error handling, etc.
 - No Operating System drivers required for individual accelerators

- Acceleration Framework (SW framework for offloading)
 - Simple software library approach for applications running within VMs/Containers
 - Developer writes regular application software in any language with full toolset
Arm CCIX demonstration vehicle

- Arm’s DynamIQ and CoreLink CMN-600 technology
- Cadence CCIX and PCIe controller and PHY IP
- TSMC 7nm process technology
- CCIX Connectivity to Xilinx’s Virtex UltraSoC+ FPGA

Xilinx, Arm, Cadence, and TSMC Announce World's First CCIX Silicon Demonstration Vehicle in 7nm Process Technology
CCIX: Seamless Acceleration

- CCIX benefits accelerated applications such as machine learning, smart networks, and big data analytics with increased bandwidth, lower latency and more efficient data sharing.

- Shared virtual memory enables CCIX accelerator functions that just work in the cloud.

- Easy adoption and simplified development by leveraging today’s data center infrastructure.
Tech leaders join forces to form OpenCAPI

A data-centric approach to server design
OpenCAPI Design Goals.

- Low Latency High Bandwidth Attach
- Flexibility to support range of devices
- Asymmetric design, endpoint optimized for host and device attach
Memory Design Basis

- POWER8 (2014) is origin of OpenCAPI memory attach IP
- Achieved 80 ns “load to use” latency
 - Compared to 70 ns direct attach
 - 4 DDR channels per buffer (32 socket)
- Proprietary
- Non-standard lane width (21b)
- Slave only function

Up to 8 Centaurs for each POWER8 Chip: 230 GB/s, 128 MB L4 Cache
Up to 4 DDR3 ports / Centaur (32 total): 410 GB/s, 1 TB memory
Comparison of Memory Paradigms

Main Memory
- Processor Chip
- DLx/TLx
- Data
- DDR4/5

Example: Basic DDR attach

Emerging Storage Class Memory
- Processor Chip
- DLx/TLx
- Data
- SCM

Tiered Memory
- Processor Chip
- DLx/TLx
- Data
- DDR4/5
- SCM
POWER9 Hardware

- 25 GHz support
- Support for 32 lanes (four x8 interfaces)
- Bandwidth
 - 22.1 GB/sec sustained read bw
 - 22.0 GB/sec sustained write bw

- Xilinx VU3P Device latency
 - TL+DL running at 400 MHz
 - Total send+receive latency of 80ns
 - Compared with ~400-500 ns for PCIe
OpenCAPI Consortium

- Open forum founded by AMD, Google, IBM, Mellanox, and Micron in October 2016
- Innovate and manage the OpenCAPI specifications/enablement and grow the ecosystem
- Currently 35 members and steadily growing
- Board Members: AMD, Google, IBM, Mellanox Technologies, Micron, NVIDIA, WD, and Xilinx
- Technical Steering Committee established with functioning Work Groups including PHY Signaling, PHY Mechanical, TL Specification, DL Specification, Enablement, and soon Compliance and more
- Enablement in place for reference designs, documentation, SIM environment, etc.
- Established website www.opencapi.org
- Initial OpenCAPI Specifications available to download off website after registering
Cross Industry Collaboration and Innovation

Welcoming new members in all areas of the ecosystem
Gen-Z Memory

Michael Krause, HPE
Gen-Z Lead Architect
www.genzconsortium.org
Gen-Z Overview

- **High Performance**
 - High Bandwidth, Low Latency, Scalable
 - Eliminates protocol translation cost / complexity / latency
 - Eliminates software complexity / overhead / latency

- **Reliable**
 - No stranded resources or single-point-of-failures
 - Transparently bypass path and component failure
 - Enables highly-resilient data (e.g., RAID / erasure codes)

- **Secure**
 - Provides strong hardware-enforced isolation and security

- **Flexible**
 - Multiple topologies, component types, etc.
 - Supports multiple use cases using simple to robust designs
 - Thorough yet easily extensible architecture

- **Compatible**
 - Use existing physical layers, unmodified OS support

- **Economic**
 - Lowers CAPEX / OPEX, unlocks / accelerates innovation

Gen-Z speaks the language of compute

www.genzconsortium.org
Gen-Z Memory Use Case

- Seamlessly augments DDR / HBM solutions
 - Supports unmodified applications, OS, middleware
 - Load-stores transparently translated into read-writes

- Abstracts media to break processor-memory interlock
 - Accelerates solution agility
 - Creates a virtuous circle of innovation
 - Supports any mix of DRAM, SCM, and NVM media

- Very high bandwidth (16 GT/s to 112 GT/s signaling)
 - Delivers 32 GB/s to 400+ GB/s per memory module

- Supports legacy and new high-capacity form factors
 - 10s GB to multi-TB capacities

- Supports point-to-point and switch-based topologies
 - Scales from co-packaged to single motherboard to rack-scale
 - Flattens memory / storage hierarchy w/integrated resiliency, multipath, aggregation, etc.
 - Logical PCI Device (LPD) scalability to 8192 modules (does not require NVMe-oF)

- Built from the “ground up” to support persistent memory semantics
 - Persistent Update (PU) flag applicable to multiple operation types
 - Write, Write Partial, Write Poison, Write-under-Mask, Meta Writes, Capabilities Write, Atomics, Buffer ops, Multi-Ops, LPD write / atomic operations, etc.
 - Persistent Flush—ensures all previously received modified data is persistent
Composable Memory

Today
- Memory is captive of the host device (processor)
 - Stranded memory channels and memory resources
- Can’t scale memory independently of processing
- All accesses must traverse host processor

Gen-Z
- Memory and processing scale independently
- Heterogeneous compute & memory deployments
- Direct access to memory devices across fabric
- Memory can be dedicated or shared by processors
- Supports up to 64-way barber pole memory interleaving—enables high-bandwidth DRAM and SCM solutions
- Supports RAID / erasure code-based memory solutions
- Scales from motherboard to rack-scale
Scalable Form Factor (ZSFF)\(^1\)

- **Supports any component type**
 - Flash, SCM, DRAM, NIC, GPU, FPGA, DSP, ASIC, etc.
- **Supports multiple interconnect technologies**—Gen-Z, PCIe, etc.
- **Single and double-wide—scale in x-y-z directions**
 - Increased media, power, performance, and thermal capacity
 - Double-wide can be inserted into pairwise single slots
- **Supports 1C, 2C, and 4C scalable connectors**
 - Density enables multiple connectors / module—scale power & performance
- **Scalable Form Factor Benefits:**
 - Simplifies supply chain
 - Lower customer CAPEX / OPEX
 - Consistent customer experience
 - Increases solution and business agility @ lower dev cost
 - Eliminates Potential ESD Damage
 - Can safely move modules from failed / old to new enclosure
 - Eliminates SPOF and stranded resources
 - Multiple links per connector, multiple connectors per module
 - Scalable thermal plus improved airflow across components
 - Supports hybrid and data-centric computing

\(^1\) Draft specification publicly available—see www.genzconsortium.org

* Bandwidth calculated using 32 GT/s Signaling
** DRAM module provides 3.5x the highest-capacity DDR5 DIMM
Gen-Z Consortium Milestones

- Significant milestones over the past year
 - Multi-vendor Proof-of-Concept Demonstrated (FMS / SC’17)
 - Multiple specifications publicly available (core architecture, mechanical, PHY, etc.)
 - ~40 tutorials publicly available, YouTube channel, etc.
 - Expanded membership (including academic & government agencies)

- Key 2018 Objectives
 - Expand Gen-Z security to support page-level data encryption / authenticated
 - Deliver design guides covering: DRAM / SCM, LPD, Storage, eNIC, and high-speed messaging
 - New Scalable Connector-based internal cable
 - New 48V high-power module capability
 - Compliance testing

© 2018 SNIA Persistent Memory Summit. All Rights Reserved.
Thank You