

New Interconnects

Moderator: Doug Voigt, Distinguished Technologist, HPE

Three Consortia Formed in Oct 2016

© 2018 SNIA Persistent Memory Summit. All Rights Reserved.

Cache Coherent Interface for Accelerators (CCIX)

David Koenen, Arm

4

https://www.ccixconsortium.com/

Mission of the CCIX Consortium is to develop and promote adoption of an industry standard specification to enable coherent interconnect technologies between general-purpose processors and acceleration devices for efficient heterogeneous computing.

- New class of interconnect for accelerated applications
- Now class of interconnect for accelerated

CCIX Consortium Inc

- Formed January 2016, incorporated in February 2017
- Complete ecosystem with 42
 members and growing
- Hardware specification available for design starts for member companies
- CCIX pronounced: (c' siks)

System topology examples

Direct attached, daisy chain, mesh and switched topologies

© 2018 SNIA Persistent Memory Summit. All Rights Reserved.

CCIX SoC to NVM Slave device

- CCIX capable devices behave similarly to nodes in existing NUMA systems
 - Memory based approach leverages existing Operating System capabilities
 - Enabled by coherent shared virtual memory it's all "just memory"
- Dual mode CCIX/PCIe devices leverage PCIe Pins, Traces, Connector, and discovery
- Minimal OS changes required, mostly for optional/enhanced capabilities
 - E.G. one OS driver for power management, firmware-first error handling, etc.
 - No Operating System drivers required for individual accelerators
- Acceleration Framework (SW framework for offloading)
 - Simple software library approach for applications running within VMs/Containers
 - Developer writes regular application software in any language with full toolset

Arm CCIX demonstration vehicle

- Arm's DynamIQ and CoreLink CMN-600 technology
- Cadence CCIX and PCIe controller and PHY IP
- TSMC 7nm process technology
- CCIX Connectivity to Xilinx's Virtex UltraSoC+ FPGA

Xilinx, Arm, Cadence, and TSMC Announce World's First CCIX Silicon Demonstration Vehicle in 7nm Process Technology

- CCIX benefits accelerated applications such as machine learning, smart networks, and big data analytics with increased bandwidth, lower latency and more efficient data sharing
- Shared virtual memory enables CCIX accelerator functions that just work in the cloud
- Easy adoption and simplified development by leveraging today's data center infrastructure

OpenCAPI Design Goals.

- Low Latency High Bandwidth Attach
- Flexibility to support range of devices
- Asymmetric design, endpoint optimized for host and device attach

Memory Design Basis

- POWER8 (2014) is origin of OpenCAPI memory attach IP
- Achieved 80 ns "load to use" latency
 - Compared to 70 ns direct attach
 - 4 DDR channels per buffer (32 socket)
- Proprietary
- Non-standard lane width (21b)
- Slave only function

Up to 8 Centaurs for each POWER8 Chip:

Up to 4 DDR3 ports / Centaur (32 total):

230 GB/s, 128 MB L4 Cache 410 GB/s, 1 TB memory

© 2018 SNIA Persistent Memory Summit. All Rights Reserved.

Comparison of Memory Paradigms

© 2018 SNIA Persistent Memory Summit. All Rights Reserved.

POWER9 Hardware

- 25 GHz support
- Support for 32 lanes (four x8 interfaces)

Bandwidth

- 22.1 GB/sec sustained read bw
- 22.0 GB/sec sustained write bw
- Xilinx VU3P Device latency
 - TL+DL running at 400 MHz
 - Total send+receive latency of 80ns
 - > Compared with ~400-500 ns for PCIe

OpenCAPI Consortium

- Open forum founded by AMD, Google, IBM, Mellanox, and Micron in October 2016
- Innovate and manage the OpenCAPI specifications/enablement and grow the ecosystem
- Currently 35 members and steadily growing
- Board Members: AMD, Google, IBM, Mellanox Technologies, Micron, NVIDIA, WD, and Xilinx
- Technical Steering Committee established with functioning Work Groups including PHY Signaling, PHY Mechanical, TL Specification, DL Specification, Enablement, and soon Compliance and more
- Enablement in place for reference designs, documentation, SIM environment, etc.
- Established website <u>www.opencapi.org</u>
- Initial OpenCAPI Specifications available to download off website after registering

5

■ PERSISTENT MEMORY **Cross Industry Collaboration and** Innovation IANUARY 24, 2018 SAN IOSE, CA Systems and Software Research & Deployme Academic DELLEMC IBM nt Accelerator Solutions YA Dro Hewlett Packard Enterprise ISVs SOC ŴD **OpenCAPI** Protocol Mellanox eli Micron IBM ALPHA DATA beamlines **Products and Services** Google O SAMSUNG CAVIUM Amphenol AssembleTech Parade **ETE** achronix molex SEMICONDUCTOR CORPORATION RSIDAD D CÓRDOBA EVERSPIN TOSHIBA APPLIED Roche University of New Hampshire **£** XILINX SK hynix **SmartDV** make possible **TU**Delft 🕥 Microsemi. Synology **Tektronix ETH** zürich Rambus NGCODEC 17 © 2018 SNIA Persistent Memory Summit. All Rights Reserved.

Gen-Z Memory

Michael Krause, HPE Gen-Z Lead Architect www.genzconsortium.org

Gen-Z Overview

High Performance

- High Bandwidth, Low Latency, Scalable
- Eliminates protocol translation cost / complexity / latency
- Eliminates software complexity / overhead / latency

Reliable

- No stranded resources or single-point-of-failures
- Transparently bypass path and component failure
- Enables highly-resilient data (e.g., RAID / erasure codes)

Secure

Provides strong hardware-enforced isolation and security

Flexible

- Multiple topologies, component types, etc.
- Supports multiple use cases using simple to robust designs
- Thorough yet easily extensible architecture

Compatible

- Use existing physical layers, unmodified OS support

Economic

• Lowers CAPEX / OPEX, unlocks / accelerates innovation © 2018 SNIA Persistent Memory Summit. All Rights Reserved.

Gen-Z speaks the language of compute

Soc	Compute	My My My My System My FPGA GPU
Point-to-po	Gen-Z pint or switch-based,	Any Topology
DRAM SCM Dedicated or SI	DRAM SCM	Network Storage

www.genzconsortium.org

Gen-Z Memory Use Case

- Seamlessly augments DDR / HBM solutions
 - Supports unmodified applications, OS, middleware
 - Load-stores transparently translated into read-writes
- Abstracts media to break processor-memory interlock
 - Accelerates solution agility
 - Creates a virtuous circle of innovation
 - Supports any mix of DRAM, SCM, and NVM media
- Very high bandwidth (16 GT/s to 112 GT/s signaling)
 - Delivers 32 GB/s to 400+ GB/s per memory module
- Supports legacy and new high-capacity form factors
 - 10s GB to multi-TB capacities
- Supports point-to-point and switch-based topologies
 - Scales from co-packaged to single motherboard to rack-scale
 - Flattens memory / storage hierarchy w/integrated resiliency, multipath, aggregation, etc.
 - Logical PCI Device (LPD) scalability to 8192 modules (does not require NVMe-oF)
- Built from the "ground up" to support persistent memory semantics
 - Persistent Update (PU) flag applicable to multiple operation types
 - > Write, Write Partial, Write Poison, Write-under-Mask, Meta Writes, Capabilities Write, Atomics, Buffer ops, Multi-Ops, LPD write / atomic operations, etc.
 - Persistent Flush—ensures all previously received modified data is persistent

Composable Memory

Today

Memory is captive of the host device (processor)

- Stranded memory channels and memory resources
 Can't scale memory independently of processing
- All accesses must traverse host processor

Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem SoC	Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem SoC	Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem SoC	Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem		
Network / Fabric					
SoC	SoC	SoC	SoC		
Mem Mem Mem Mem	Mem Mem Mem Mem	Mem Mem Mem Mem	Mem Mem Mem Mem		
TRACTORES, DESCRIPTION DESCRIPTION DESCRIPTION	Conserverses, restaurant, restaurant, manufacture	DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DE LA COMPAGNICIÓN DE LA COMPAGNICA DE LA COMPAGNICIÓN DE LA COMPAGNICICA DE LA COMPAGNICICA DE LA COMPAGNICA DE LA COMPAGNICICA DE LA COMPAGNI	STREET, STREET, STREET, STREET,		
Mem Mem Mem Mem	Mem Mem Mem Mem	Mem Mem Mem Mem	Mem Mem Mem Mem		
Mem Mem Mem Mem Mem Mem Mem Mem	C assesses assessed meeting meeting	Mem Mem Mem Mem Mem Mem Mem Mem	Mem Mem Mem Mem Mem		

© 2018 SNIA Persistent Memory Summit. All Rights Reserved.

Gen-Z

- Memory and processing scale independently
- Heterogeneous compute & memory deployments
- Direct access to memory devices across fabric
- Memory can be dedicated or shared by processors
- Supports up to 64-way barber pole memory interleave enables high-bandwidth DRAM and SCM solutions
- Supports RAID / erasure code-based memory solutions
- Scales from motherboard to rack-scale

Scalable Form Factor (ZSFF)¹

Supports any component type

- Flash, SCM, DRAM, NIC, GPU, FPGA, DSP, ASIC, etc.
- Supports multiple interconnect technologies—Gen-Z, PCIe, etc.
- Single and double-wide—scale in x-y-z directions
 - Increased media, power, performance, and thermal capacity
 - Double-wide can be inserted into pairwise single slots
- Supports 1C, 2C, and 4C scalable connectors
 - Density enables multiple connectors / module—scale power & performance
- Scalable Form Factor Benefits:
 - Simplifies supply chain
 - Lower customer CAPEX / OPEX
 - Consistent customer experience
 - Increases solution and business agility @ lower dev cost
 - Eliminates Potential ESD Damage
 - > Can safely move modules from failed / old to new enclosure
 - Eliminates SPOF and stranded resources
 - > Multiple links per connector, multiple connectors per module
 - Scalable thermal plus improved airflow across components
 - Supports hybrid and data-centric computing

© 2018 SNIA Persistent Memory Summit. All Rights Reserved.

¹ Draft specification publicly available—see <u>www.genzconsortium.org</u> * Bandwidth calculated using 32 GT/s Signaling ** DRAM module provides 3.5x the highest-capacity DDR5 DIMM

Gen-Z Consortium Milestones

Significant milestones over the past year

- Multi-vendor Proof-of-Concept Demonstrated (FMS / SC'17)
- Multiple specifications publicly available (core architecture, mechanical, PHY, etc.)
- ~40 tutorials publicly available, YouTube channel, etc.
- Expanded membership (including academic & government agencies)

Key 2018 Objectives

- Expand Gen-Z security to support page-level data encryption / authenticated
- Deliver design guides covering: DRAM / SCM, LPD, Storage, eNIC, and high-speed messaging
- New Scalable Connector-based internal cable
- New 48V high-power module capability
- Compliance testing

Thank You