Analysts Weigh In On Persistent Memory

Moderator:
Michael Oros, Executive Director, SNIA
Today’s Presenters

- Jim Handy and Tom Coughlin on How Persistent Memory Will Succeed
- Randy Kerns with An Analyst Perspective – IT Clients
- Gil Russell and Alan Niebel on Persistent Memory Dynamics
How Persistent Memory Will Succeed

Jim Handy, Objective Analysis & Tom Coughlin, Coughlin Associates
Who Wants Persistent Memory?

- If it’s more costly than DRAM (NVDIMMs)
 - High-availability systems
 - Financial databases
 - Some hyperscale applications

- If it’s cheaper than DRAM (XPoint, etc.)
 - Everybody will want it!
 - It’s improves cost/performance
 - Persistence is of secondary importance
 - This will drive its success
PM Must Fit Memory/Storage Hierarchy

Bandwidth (MB/s) vs. Price per Gigabyte

- Tape
- HDD
- SSD
- DRAM
- L1
- L2
- L3

Source: *A Close Look at the Intel/Micron 3D XPoint Memory*, Objective Analysis 2015
A Lesson From Planar NAND

❖ **SLC NAND vs. DRAM**
 - Same die size
 - Same process geometry
 - Similar complexity
 - Twice as many bits
 › Should cost half as much

<table>
<thead>
<tr>
<th></th>
<th>DRAM</th>
<th>SLC NAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Area</td>
<td>~100mm²</td>
<td>~100mm²</td>
</tr>
<tr>
<td>Process</td>
<td>44nm</td>
<td>44nm</td>
</tr>
<tr>
<td>Density</td>
<td>4Gb</td>
<td>8Gb</td>
</tr>
</tbody>
</table>

❖ Yet NAND prices were higher than DRAM’s until 2004!
 - NAND wafer production reached 30% that of DRAM
Scale Drove NAND Cost Below DRAM

Average Price per Gigabyte

From: Hybrid Drives: How, Why, & When?
A Lesson From 3D NAND

- Wholesale change is incredibly difficult!
 - 3D NAND is 3 years behind schedule
- Silicon itself is a challenge
 - New materials will prove even harder
- Revolutionary change is expensive!
How Will PM Reach Ubiquity?

- It must approach DRAM volume
 - Wafer production within an order of magnitude
 - This will drive sub-DRAM prices
 - Only Intel is motivated to do this

- Persistence requires software support
 - SNIA & others are making this happen

- Other applications will use it for cost/performance
 - Initially persistence won’t be used
Phase Change Memory (PCM)

- **3D XPoint**
 - Optane NVMe SSDs available ($31.39 for 480 GB, $1.32/GB at Amazon)
 - Intel plans to launch Optane DIMM in 2H 2018
 - Micron hasn’t announced a ship date for its QuantX Technology
 - New Micron/Intel Fab JV focuses on 3D XPoint rather than 3D flash
Magnetic RAM (MRAM)

- Everspin received revenue for 256Mb STT-MRAM products in Q4—production ramp to follow
- Samples of 28nm 1 Gb chips from Everspin
- First 1-2 GB MRAM PCIe SSDs
- Global Foundries shipping MRAM for many embedded apps.
- Spin Transfer Tech. samples 80nm OST-MRAM chips
- Planned MRAM intros in 2018 by TSMC, Samsung, Tokyo Electron

Michael Ofstedahl, Avalanche Tech, EE Times, 8/2014
Ferroelectric RAM (FRAM)

- Long history of niche products (caches, buffers), but has been difficult to scale
- IMEC’s work with HfO$_2$ ferroelectric has put new life into FRAM
- Possible NAND-like devices possible
Resistive RAM (RRAM or ReRAM)

Many varieties of ReRAM

- Fujitsu and Panasonic offer chip solutions
- Crossbar sampling 40nm ReRAM, made by China’s SMIC
- TSMC and UMC put ReRAM on their roadmaps
- ReRAM still touted for storage class memories—e.g. HPE’s “The Machine” although solutions still elusive
- Neuromorphic computing is touted as ReRAM application

Shahar Kvatinsky, DevelopEx2015, 11/2015

https://nicsefc.ee.tsinghua.edu.cn/projects/emerging/neural/
Technology Comparison

<table>
<thead>
<tr>
<th>Technology</th>
<th>FeRAM</th>
<th>MRAM</th>
<th>ReRAM</th>
<th>PCM</th>
<th>DRAM</th>
<th>NAND Flash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonvolatile</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Endurance</td>
<td>10^{12}</td>
<td>10^{12}</td>
<td>10^6</td>
<td>10^8</td>
<td>10^{15}</td>
<td>10^3</td>
</tr>
<tr>
<td>Write Time</td>
<td>100ns</td>
<td>~10ns</td>
<td>~50ns</td>
<td>~75ns</td>
<td>10ns</td>
<td>10µs</td>
</tr>
<tr>
<td>Read Time</td>
<td>70ns</td>
<td>10ns</td>
<td>10ns</td>
<td>20ns</td>
<td>10ns</td>
<td>25µs</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>Low</td>
<td>Medium/Low</td>
<td>Low</td>
<td>Medium</td>
<td>Very High</td>
<td>Very High</td>
</tr>
<tr>
<td>Cell Size (f^2)</td>
<td>15-20</td>
<td>6-12</td>
<td>6-12</td>
<td>1-4</td>
<td>6-10</td>
<td>4</td>
</tr>
<tr>
<td>Cost ($/Gb$)</td>
<td>$10/Gb$</td>
<td>$30-70/Gb$</td>
<td>Currently High</td>
<td>$0.16/Gb$</td>
<td>$0.6/Gb$</td>
<td>$0.03/Gb$</td>
</tr>
</tbody>
</table>
Upcoming Emerging Memory Report

- Covers all major solid state memory/storage technologies and companies
- Describes major solid-state memory driving applications and formats
- Projections for volatile and persistent memory (embedded and discrete)
- Projections for capital investments
- Finish target date is May 2018
Summary

- PM needs to fit the storage/memory hierarchy
- It won’t all be used for its persistence
- There are many types of PM
- Different PM technologies will fill different market niches
THANK YOU

Tom Coughlin
(408) 202-5098
Tom(at)tomcoughlin.com

Jim Handy
(408) 356-2549
Jim.Handy(at)Objective-Analysis.com

Coughlin Associates
Data Storage Consulting

Objective Analysis
Semiconductor Market Research
Analyst Perspective – IT Clients

Randy Kerns, Evaluator Group
Persistent Memory

Enterprise customers perception in general
- Part of transition away from electro-mechanical primary storage
- Transformational for storing information
 - Performance
 - Longevity
 - Change in technology updating
 - Change in plans for migrating data
 - Amortization schedules
Enterprise customers biggest issue

- Quantification of value – has not been expressed well
 - Vendor and reseller sales and marketing still using a measure of data at rest - $/GB
 - Real value is how much work can get done
 - How to express to enterprise customers?
 - How to help them justify purchases?

- Not a simple answer
Persistent Memory

- **Data at rest economics – if $/GB is your measure**
 - Just use tape
 - Lowest cost of media acquisition
Persistent Memory

- Enterprise customer perception of use of PM beyond Flash in storage systems
 - Expect as cache in storage – rather than large DRAM
 - Economics discussion – what is the value – cost vs performance
 - Usage beyond that – beyond majority of customer's horizons
Contact Info
Randy Kerns Randy@evaluatorexternalgroup.com
@rgkerns
PH:+1-303-748-0276

THANK YOU
WWW.EVALUATORGROUP.COM
Persistent Memory Dynamics

GIL RUSSELL & ALAN NIEBEL - WEBFEET RESEARCH, INC.
Technology is “thought” to be most relevant to the In-Memory Computing and Cognitive Computing Market Segments (Fat Memory Segment)

Storage Class Memory (SCM) 2008
- SCM fiction based on cost per bit;
 “..., ultimately such a storage-class memory (SCM) device could potentially replace magnetic hard-disk drives (HDDs) in enterprise storage server systems.” – G.W. Burr et al, IBM 2008

Rapid growth of NAND-Flash SSDs delayed market demand for Persistent Memory

Then came IMC and Cognitive Computing
- Byte addressability added to SCM
- Presto! “Persistent Memory!”
- Now called NVRAM when applied as a DRAM replacement
Non-Volatile RAM - NVRAM

- DDR4 Functionality
- Low latency
 CL ≤ 13.5
- Higher Density
 Roadmaps
 8 – 32 Layers
- Persistence
 ≤ 10 years
- Endurance
 $10^{11} - 10^{12}$ PE
- Zero Refresh
 (or very low overhead)
DRAM has had a good run (Toshiba 1966)

CPU performance gains limited by memory size (and cost)

- DRAM density has not improved fast enough to fill the need
- NVRAM fulfills density improvements (long term roadmap)
 - XY Square Geometry shrink density improvements
 - Multi Layer introductions provide linear improvements
 - Substantial power reduction
 - Opens market for MLC, TLC, and QLC type devices
NVRAM – Market Synopsis

- **NVRAM competitive product positioning**
 - Dependent on System Level Context
 - Price competitive with XPoint in a $71B Market?
 - Competitive performance comparisons?
 - Secondary supply suggests an open standard

- **3D XPoint will dominate market beginning in the 2H ’18**
 - Introduction of competing NVRAM products expected to begin ramp in 2H ’19

- **NVRAM replacing DRAM & NAND in mobile space in 2020**
Persistent Memory Trends

- Persistent Memory coupled with Cognitive Computing Architectures enables:
 - Very Large Persistent Memory Arrays
 - AI Algorithms to reduce compute times (hours to minutes)
- Processor In Memory – PIM (or Bottleneck Be Gone)
 - Beginning of Data Execution in Memory
 - Data motion progresses from inches to microns and data rates from 1TB/s to 10’s of PB/s
- Heteroassociative memory
 - The human brain is fully associative
 - One item is able to recall a totally different item
NVRAM Revenue

Smartphone

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple iOS Munits</td>
<td>234</td>
<td>252</td>
<td>269</td>
<td>277</td>
<td>290</td>
<td>306</td>
<td>322</td>
</tr>
<tr>
<td>NVRAM Attachment Rate</td>
<td>5%</td>
<td>35%</td>
<td>75%</td>
<td>85%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apple iOS NVRAM units</td>
<td>14</td>
<td>101</td>
<td>229</td>
<td>274</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart Phone DRAM $M</td>
<td>4,524</td>
<td>12,707</td>
<td>15,986</td>
<td>19,321</td>
<td>21,142</td>
<td>21,867</td>
<td>22,509</td>
</tr>
<tr>
<td>Smart Phone NAND</td>
<td>12,524</td>
<td>17,651</td>
<td>16,277</td>
<td>18,786</td>
<td>21,202</td>
<td>22,156</td>
<td>25,817</td>
</tr>
<tr>
<td>iPhone DRAM</td>
<td>733</td>
<td>2,033</td>
<td>2,446</td>
<td>2,879</td>
<td>3,044</td>
<td>3,171</td>
<td>3,331</td>
</tr>
<tr>
<td>iPhone NAND</td>
<td>2,029</td>
<td>2,824</td>
<td>2,490</td>
<td>2,799</td>
<td>3,053</td>
<td>3,213</td>
<td>3,821</td>
</tr>
<tr>
<td>iPhone DRAM savings NVRAM $M</td>
<td>144</td>
<td>1,066</td>
<td>2,378</td>
<td>2,832</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NVDIMM

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total - MLC NAND</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total - 3D NAND</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total - NVRAM</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>79</td>
<td>750</td>
<td>2,029</td>
<td></td>
</tr>
<tr>
<td>Total - XPoint</td>
<td>0</td>
<td>171</td>
<td>1,369</td>
<td>3,596</td>
<td>4,301</td>
<td>3,127</td>
<td></td>
</tr>
<tr>
<td>Total RAM $M</td>
<td>2</td>
<td>175</td>
<td>1,377</td>
<td>3,688</td>
<td>5,061</td>
<td>5,168</td>
<td></td>
</tr>
<tr>
<td>Total - NVRAM $M</td>
<td>0</td>
<td>0</td>
<td>144</td>
<td>1,145</td>
<td>3,128</td>
<td>4,860</td>
<td></td>
</tr>
</tbody>
</table>
Thank You

Alan Niebel
O: 1 (831) 373-3303
E: alan.niebel@web-feetresearch.com

Gil Russell
O: 1 (510) 589-9568
E: russell@webfeetresearch.com

WebFeet Research
Research | Vision | Knowledge

© 2018 SNIA Persistent Memory Summit. All Rights Reserved.