
Performance, Capacity, Persistence – Which one(s)?

Paul Grun
Advanced Technology Development, Cray

© 2019 Storage Networking Industry Association. All Rights Reserved.

Many view the emerging PM layer in the memory hierarchy as
monolithic, evolving toward Nirvana

Nirvana defined as “infinite capacity, infinite bandwidth, zero latency, zero cost”
Oh, and “infinite retention”

The truth is that there will always be tradeoffs
Performance vs Capacity vs Cost
Local vs Remote

How to choose the right tradeoffs?

2

Hmmn. Maybe start at the top?

© 2019 Storage Networking Industry Association. All Rights Reserved.
3

“The Case for Use Cases”

At FMS 2018, we began to
shift the focus onto a
discussion of “use cases”.

This year’s PM Summit
continues that trajectory

“Mr. Chairman, I’d like to revise and extend my remarks”

© 2019 Storage Networking Industry Association. All Rights Reserved.

The Familiar Memory Hierarchy

4

memory

storage

It’s a dessert topping!
It’s a floor wax! *

It’s clear that Persistent Memory
isn’t exactly memory, and it’s

not precisely storage

* With thanks to SNL, 1/10/76

…so how do we characterize it?
What role does it fill, exactly?

© 2019 Storage Networking Industry Association. All Rights Reserved.

The Familiar Memory Hierarchy…

5

memory

storage

… with a wrinkle

PM

Local

Remote

capacity

performance

…and there are tradeoffs within
the sublayers

Turns out that this new layer
isn’t monolithic…

© 2019 Storage Networking Industry Association. All Rights Reserved.

Choices!

Selecting the right technology depends on understanding (at least):
The key system design objectives

Scalability? In which dimension? Single server? Cluster?
Application requirements

Is data being shared among threads or nodes?
Are there application performance or capacity requirements?

6

Resolving the tradeoffs among PM solutions depends on
System Objectives and Application Requirements

© 2019 Storage Networking Industry Association. All Rights Reserved.

Possible (likely?) Targets for PM

Database Applications
A modifiable, an in-memory database that survives power cycles

Data Analytics
Create a persistent database once, run new queries repeatedly

Graph Analytics
Operate on larger graphs than would fit in local memory

Commercial Applications
Enable collaboration on large scale projects

HPC Applications
Scalability, parallel applications

7

Could use some help here

© 2019 Storage Networking Industry Association. All Rights Reserved.

Possible System Objectives

8

Data Availability/Protection
Replicate local cache to RPM to achieve high availability

Local System Performance
Eliminate disk accesses e.g. to stored databases

Scale Out Architectures
Scale out distributed databases, analytics applications, HPC parallel applications

Scale Up Architectures
In-memory databases that exceed local DRAM capacity

Disaggregated System Architectures
Compute capacity scales independently of memory capacity

Shared Data
Support simultaneous data access to large teams

Improved Uptime, Fast Restart
Quick server recovery following power cycle
Checkpoint restart

Improved Disk Storage Performance

A topic for a storage forum, not a PM Summit.
We’re talking about memory reads and writes.
For disk replacement, swap SSDs for HDDs

revised and extended from Flash
Memory Summit 2018

© 2019 Storage Networking Industry Association. All Rights Reserved.

Some Consumer* Considerations

9

Application Objectives
Performance vs capacity?

Sharing Models
Shared data vs unshared data?
A shared service vs a dedicated service?

Memory Model
Flat address space vs object stores?

Characteristic Traffic Patterns, Traffic Engineering Requirements
Small byte operations vs bulk data transfer?

Ordering Semantics, Atomicity
…

* consumer of memory services

© 2019 Storage Networking Industry Association. All Rights Reserved.

Nonvolatile Memory Tradeoffs

Technology
DRAM “replacements”

STT-MRAM, NRAM, PCM …

Gap fillers (between DRAM and Flash)
3DXP, Crossbar ReRAM (resistive RAM)

Capacity Devices
NAND Flash

Form Factors
NVDIMM-N, NVDIMM-P, PCIe

Locality
Local versus Remote

10

performance

capacity

byte
addressable

block

© 2019 Storage Networking Industry Association. All Rights Reserved.

Not All Applications Value Persistence

Persistence is valuable for:
High Availability applications where maintaining state between power
cycles is crucial
Reducing or eliminating the need to access slower media, e.g. HDDs
Data protection and preservation

Persistence not required, but nice to have:
Certain applications, such as analytics, that require establishing a
database. Build the database once, run multiple queries against it
Collaborative workspaces

11

If the app doesn’t need persistence, then the so-called convergence
of storage and memory is uninteresting

© 2019 Storage Networking Industry Association. All Rights Reserved.

First Order Tradeoff: Local vs Remote

Some requirements are met by siting persistent memory devices on
the local compute node

Capacity-based applications
Some High Availability usages
Replacement of local storage for performance reasons

Others are only achieved by distributing persistent memory
Compute/memory disaggregation

independent scaling of compute and memory

Shared resource / shared data
Team collaboration

12

© 2019 Storage Networking Industry Association. All Rights Reserved.

Use Cases – Local PM

13

Data Availability/Protection
Replicate local cache to RPM to achieve high availability

Local System Performance
Eliminate disk accesses e.g. to stored databases

Scale Out Architectures
Scale out distributed databases, analytics applications, HPC parallel applications

Scale Up Architectures
Scale up databases that exceed local memory capacity

Disaggregated System Architectures
Compute capacity scales independently of memory capacity

Shared Data
Support simultaneous data access to large teams

Improved Uptime, Fast Restart
Quick server recovery following power cycle
Checkpoint restart

© 2019 Storage Networking Industry Association. All Rights Reserved.

Tradeoffs - Local PM

14

Performance

Scale Up

Fast Restart

√√√
√

√√√

√√
√√√
√

√
√√√
√

Persistence Performance Capacity

√√√ Required
√√ Desirable

√ unimportant

All are debatable.
The point is to make
tradeoffs based on your
use case.

© 2019 Storage Networking Industry Association. All Rights Reserved.

Remote PM – System, Memory Model

15

Organized into pools,
accessed as memory

Can be configured as a flat address
space, or as object storage. Or both.

NIC
CPU
DDR

NIC
CPU
DDR

NIC
CPU
DDR

. . .

NIC NICNIC

network

RPM
service
node

RPM
service
node

RPM
service
node

Shared or unshared resource

© 2019 Storage Networking Industry Association. All Rights Reserved.

Use Cases – Remote PM

16

Data Availability/Protection
Replicate local cache to RPM to achieve high availability

Local System Performance
Eliminate disk accesses e.g. to stored databases

Scale Out Architectures
Scale out distributed databases, analytics applications, HPC parallel applications

Scale Up Architectures
Scale up databases that exceed local memory capacity

Disaggregated System Architectures
Compute capacity scales independently of memory capacity

Shared Data
Support simultaneous data access to large teams

Improved Uptime, Fast Restart
Quick server recovery following power cycle
Checkpoint restart

© 2019 Storage Networking Industry Association. All Rights Reserved.

Data Protection Use Case

17

What it looks like

How it works

Usage: replicate data that is stored
in local PM across a fabric and

store it in remote PM

“High Availability”

© 2019 Storage Networking Industry Association. All Rights Reserved.

Scale Out Use Case

18

How it works

What it looks like

Usage: Expand on-node memory capacity,
while taking advantage of persistence (or

not). Disaggregate memory from compute.
remote

memory
service

PM

PM

PM

appDDR

NIC

appDDR

NIC

…

user Remote
PM

completion

put

“Scalable Memory”

© 2019 Storage Networking Industry Association. All Rights Reserved.

Shared Data Use Case

19

What it looks like How it works

Usage: Information is shared among the
elements of a distributed application.

Persistence can be used to guard against
node failure.

PM

app

NIC

app

NIC

Remote Shared
Memory Service

user

completion

user
put get

notice

“Scale-out Applications”

Remote

PM

© 2019 Storage Networking Industry Association. All Rights Reserved.

Tradeoffs - Remote PM

20

Data Availability

Scale Out

Disaggregation

√√√
√
√√

√√
√√√
√√√

√
√√√
√√√

Persistence Performance Capacity

Shared Data √√ √√ √√√

√√√ Required
√√ Desirable

√ unimportant

All are debatable.
The point is to make
tradeoffs based on your
use case.

Checkpoint √√√ √√ √√

© 2019 Storage Networking Industry Association. All Rights Reserved.

A Few Interesting Apps for RPM

High Availability
(Almost) simultaneous writes to local memory and remote PM
For data recovery and failover with little to no work loss

HPC Checkpoint/Restart
Application pauses to enable rapid copy of relevant state to a checkpoint

Distributed collaboration
A central shared repository for a distributed team collaborating on a large artifact

Machine learning, Sensor data ingest and analysis
Ingest of large datasets
Data analysis accomplished by distributed threads - short random reads

21

© 2019 Storage Networking Industry Association. All Rights Reserved.

Some Challenges with RPM

NUMA, by definition
Probably okay, just be aware of it

Generally requires asynchronous operation
Including delayed completions

Networks introduce unavoidable latencies
As long as the application can tolerate it

Transaction model will often favor pull vs push operations
not necessarily native to the way application writers think

22

Net-net, probably can’t treat remote and local PM exactly the same.
Not quite transparent, but close.

© 2019 Storage Networking Industry Association. All Rights Reserved.

Pithy Commentary

Understand the use case(s) first
Consider all the attributes of PM, beyond persistence

Think about Cost, Performance & Capacity
Consider the chicken and the egg

PM as an accelerator or existing application models,
PM as an enabler of new application models

23

	Performance, Capacity, Persistence – Which one(s)?
	Slide Number 2
	Slide Number 3
	The Familiar Memory Hierarchy
	The Familiar Memory Hierarchy…
	Choices!
	Possible (likely?) Targets for PM
	Possible System Objectives
	Some Consumer* Considerations
	Nonvolatile Memory Tradeoffs
	Not All Applications Value Persistence
	First Order Tradeoff: Local vs Remote
	Use Cases – Local PM
	Tradeoffs - Local PM
	Remote PM – System, Memory Model
	Use Cases – Remote PM
	Data Protection Use Case
	Scale Out Use Case
	Shared Data Use Case
	Tradeoffs - Remote PM
	A Few Interesting Apps for RPM
	Some Challenges with RPM
	Pithy Commentary

