

Forthcoming Cross Point ReRAM

Amigo Tsutsui Sony Semiconductor Solutions Corp

ReRAM: High Speed and Low Power

PCM

Two states of phase change material Based on thermal operation

- Amorphous: low resistance
- Crystalline: high resistance

ReRAM

Two states of ReRAM material Based on electric operation

- Metal bridge(pillar): low resistance
- No bridge(pillar): high resistance

ReRAM: Faster Switching Possibility <5ns

	Active cell area	40 nmΦ
Set	Set pulse width	5 ns
	Set current	110 µA
	Set voltage	+3 V
Reset	Reset pulse width	1 ns
	Reset current	125 µA
	Reset voltage	–1.7 V

K. Aratani, "A Novel Resistance Memory with High Scalability and Nanosecond Switching" IEDM 2007

(XP) Cross Point ReRAM

- Cell dimension 4F²
- Multiple decks feasible
- CMOS underneath array

Cross Point Array Bipolar Operation

0V

0V

- Positive bias for Set and Read, negative bias for Reset
- Half-selected cells (½ Vset or ½ Vreset) SHOULD NOT turn on. This limitation is from XP architecture.

Set and Read Reset (Positive bias for cell) (Negative bias for cell) 0V 0V 1/2 Vset or 0V 0V ½ Vread -½ Vreset 0V 0V 0V 0V Selected cell Selected cell -1/2 Vset or ½ Vreset 0V 0V Half-selected cells Half-selected cells -1/2 Vread

Selector for Cross Point ReRAM

TEM cross section

Pulsed JV curve

1e+7
1e+6
1e+5
1e+4
1e+3
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
V(V)

Two key technologies have been developed for 100Gb-class Persistent Memory,,,,

S. Yasuda, "A Cross Point Cu-ReRAM with a Novel OTS Selector" VLSI Symposium 2017

Cross section

Transient Analysis

1S1R device can Set/Reset in 10ns.

Possible Performance

XP ReRAM

Item	Target
R/W sector size	512B
Read Throughput	3.2GB/s
Read Latency	0.4us
Write Throughput	1.2GB/s
Write Latency	2us

Controller: 1us (ECC, WL, etc.)

XP ReRAM + Controller

Item	Target
R/W sector size	512B
Read Throughput	3.2GB/s
Read Latency	1.4us
Write Throughput	1.2GB/s
Write Latency	2.4us

Item	8chip Target	16chip Target
R/W size	4kB	8kB
Read Throughput	25.6GB/s	51.2GB/s
Read Latency	1.4us	1.4us
Write Throughput	9.6GB/s	19.2GB/s
Write Latency	2.4us	2.4us

Example: Power Barrier for Small Form Factor

Item	8chip Target	16chip Target
R/W size	4kB	8kB
Read Throughput	25.6GB/s	51.2GB/s
Read Latency	1.4us	1.4us
Write Throughput	9.6GB/s	19.2GB/s
Write Latency	2.4us	2.4us

PCIe Gen5 x8 PCIe Gen5 x16

If CTL > 5W and ReRAM > 1.2W, Total in 8chip >14.6W If CTL > 8W and ReRAM > 1.2W, Total in 16chip >27.2W

ReRAM power is less than PCM, but bigger than DRAM Need to reduce power of ReRAM and controller Care for thermal budget of small form factor

Summary

- XP ReRAM is expected to high performance application such as Persistent Memory
- The power consumption must be considered for small form factor application
- The dedicated controller design is also needed to reduce the total power