## PERSISTENT MEMORY **4** CI IM JANUARY 24, 2019 | SANTA CLARA, CA **MRAM, XPoint, ReRAM PM Fuel to Propel Tomorrow's Computing Advances Jim Handy Tom Coughlin**

**Objective Analysis** 

**Coughlin Associates** 

#### The Market is at a Nexus







- MRAM: Magnetic RAM
- ReRAM: Resistive RAM
- PCM: Phase-Change Memory (i.e. 3D XPoint)
- FRAM: Ferroelectric RAM
- Etc.

#### All are nonvolatile memories: "NVM"



#### The field has not narrowed:

- MRAM, PCM, ReRAM, & FRAM all well represented
- First big application is still unclear
  - Embedded NVM? Stand-alone? Embedded RAM? Neural nets?
  - Everybody points to ballooning "Big Data"
- Everybody's participating
  - Samsung, SK hynix, Micron, Toshiba, Intel, TSMC, Macronix, etc.
- Flash might not be dead after all

#### Papers By Type



| Technology  | Papers |  |
|-------------|--------|--|
| Flash       | 9      |  |
| RAM         | 3      |  |
| MRAM        | 13     |  |
| ReRAM       | 17     |  |
| FRAM        | 30     |  |
| PCM         | 9      |  |
| Neural Nets | 25     |  |

Neural Nets and FRAM take the prize

- FRAM's suddenly "New" again!
- MRAMs had a conference of their own after IEDM
  - 10 more presentations
- ReRAM well represented
- Flash coverage surprising
  - It's not dead yet!

## What We learned at IRDS Rebooting Computing and elsewhere



- IEEE events in November 2018 near Washington, D.C.
- End of Moore's Law scaling leading to new Computing Models
  - Approximate Computing
  - Adiabatic Computing
  - Neuromorphic Computing (often using emerging memory technologies)
  - Quantum Computing
- Rise of new architectures like RISC-V
- Development of special purpose application accelerators



- Why Emerging Memories are Necessary
- Understanding Bit Selectors
- The Technologies
- Process Equipment Requirements
- Emerging Memory Companies
- Forecasting Emerging Memories

#### Now available for online purchase



#### Flash can't scale with process advances

- NAND flash went 3D at 15nm
  - > 3D is not cost-effective in a CMOS logic process
- NOR scaling stops with FinFET
  - > 28nm & smaller processes need something new

#### Low DRAM densities load down the memory bus

Al is expensive on a von Neumann machine, hence new computer architectures





**Process Geometry** 



#### **Bus Signal**



#### SNIA has made important contributions!

### Biggifying Memory with 3D XPoint



#### **Bus Signal**



#### SNIA has made important contributions!

## Simplifying AI





© 2018 SNIA Persistent Memory Summit. All Rights Reserved.



## Simplifying AI

# $\sqrt{2}$ 64Kb Array = 256 sums of 256 Multiplies EACH! All in a single cycle. \/4 Should SNIA participate in this? =V1\*(1/R1)+V2\*(1/R2)+V3\*(1/R3)+V4\*(1/R4)

© 2018 SNIA Persistent Memory Summit. All Rights Reserved.

### **Big Data Analytics**

- A big topic at *Rebooting* Computing
- Graph problems: High Communication/Computation ratio
- Feature recognition: Works OK with low precision (i.e. Analog)





Lightspeeur® 2802M, Production AI Accelerator Chip with MRAM (from 2019 CES)





- Includes: The GME (Gyrfalcon MRAM Engine)
- 9.9 TOPS/W in a 22nm ASIC
- Produced via TSMC Collaboration
- Industry leading features, like Non-Volatile Memory

| ~ 40 MB of Memory | Large embedded models                        |                      |  |  |
|-------------------|----------------------------------------------|----------------------|--|--|
|                   | Multiple AI models :                         | Multiple AI models : |  |  |
|                   | Image Classification                         | Facial recognition   |  |  |
|                   | Voice identification                         | Voice Commands       |  |  |
|                   | Text to speech                               | And others           |  |  |
| Power Savings     | 20-50% when compared to SRAM or "other MRAM" |                      |  |  |
| Custom Designs    | esigns One Time Programmable Memory          |                      |  |  |
|                   | Up to 10 ns Read Speed (~30 TOPS/W)          |                      |  |  |
|                   | Non-Power Leakage                            |                      |  |  |



#### Why Emerging Memories are Necessary

#### Understanding Bit Selectors

#### The Technologies

#### Process Equipment Requirements

#### Emerging Memory Companies

Forecasting Emerging Memories





# "The select device is a big issue: How to combine it with the memory element? You can make a ReRAM out of an eggshell, but you can't scale that!"

Scott deBoer, Micron Fellow, 7/28/15





© 2018 SNIA Persistent Memory Summit. All Rights Reserved.



















Why Emerging Memories are Necessary

Understanding Bit Selectors

#### The Technologies

- Process Equipment Requirements
- Emerging Memory Companies
- Forecasting Emerging Memories



- MRAM
- ReRAM
- PCM/Xpoint
- FRAM
- Other technologies





#### Bit is set/reset through magnetization

#### **Resistive RAM (ReRAM)**





#### Two main types:

- Conductive Bridge
- Oxygen Vacancy





#### Bit set via heat/cool cycle

- Crystalline conducts
- Amorphous insulates

#### Ferroelectric RAM (FRAM)





#### Central atom is up or down

#### Other Technologies



- Carbon Nanotubes
- Graphene Memories
- Conductive Electron RAM (CeRAM)
- Polymeric ferroelectrics
- Ferroelectric tunnel junctions (FTJ)
- Ferroelectric FETs (FeFETs)
- Interfacial PCM/TRAM
- Magnetoelectric RAM (MeRAM)
- Racetrack Memory



- Why Emerging Memories are Necessary
- Understanding Bit Selectors
- The Technologies
- Process Equipment Requirements
- Emerging Memory Companies
- Forecasting Emerging Memories



- All new memories are built between metal layers
  - Tool sets are similar for MRAM, PCM, ReRAM, etc.





- Why Emerging Memories are Necessary
- Understanding Bit Selectors
- The Technologies
- Process Equipment Requirements
- Emerging Memory Companies
- Forecasting Emerging Memories



#### New Technology Developers

Chip Makers

#### Equipment Makers

| 4DS Memory           | Cypress Semiconductor    | imec                         | MicroSense                 | Samsung Semiconductor  | Thin Film Electronics   |
|----------------------|--------------------------|------------------------------|----------------------------|------------------------|-------------------------|
| Adesto Technologies  | EverSpin                 | Integral Solutions (ISI)     | Nantero                    | Seagate Technology     | Tokyo Electron          |
| Applied Materials    | Ferroelectric Memory Co. | Intel                        | NEC                        | Singulus Technologies  | Toshiba Memory Corp.    |
| Avalanche Technology | Fujitsu Semiconductor    | Jusung Engineering           | Neoark                     | SK hynix               | TowerJazz               |
| BAE Systems          | Global Foundries         | <b>Keysight Technologies</b> | NVE                        | SMIC                   | TSMC                    |
| BeSang               | Grandis                  | KLA Tencor                   | Ovonyx                     | Sony Corporation       | Ulvac                   |
| Canon-Anelva         | Hitachi High Technology  | Knowm                        | Panasonic                  | Spin Memory            | UMC                     |
| Capres A/S           | Honeywell                | Lam Research                 | Qualcomm                   | Symetrix               | Unidym                  |
| Cobham-Aeroflex      | HPE                      | Magnetic Solutions           | Rambus                     | TCLab                  | Veeco                   |
| Crocus Technology    | Hprobe                   | MagOasis                     | Ramtron                    | TDK                    | Weebit Nano             |
| Crossbar             | IBM                      | Micron Technology            | <b>Renesas Electronics</b> | Texas Instruments (TI) | Western Digital/SanDisk |



- Why Emerging Memories are Necessary
- Understanding Bit Selectors
- The Technologies
- Process Equipment Requirements
- Emerging Memory Companies
- Forecasting Emerging Memories

#### **Timeline for Change**





© 2018 SNIA Persistent Memory Summit. All Rights Reserved.

#### **Emerging Memory PB Shipments**



#### Emerging NVM market could exceed \$6B by 2028!



#### The Report

#### Emerging Memories Poised to Explode

- In-depth coverage of everything in this presentation
- 160 pages, 111 figures, 31 tables
- Can be purchased on-line for immediate download

#### Two ways to order:

- https://Objective-Analysis.com/reports/#Emerging
- http://www.TomCoughlin.com/tech-papers.htm







# Questions?

© 2018 SNIA Persistent Memory Summit. All Rights Reserved.

# Coughlin Associates



- Technical and Market Analysis
- Consulting
- Reports and Newsletter
  - Emerging Memories Poised to Explode: Emerging Memory Report
  - Digital Storage in Media and Entertainment
  - Digital Storage Technology Newsletter

# **OBJECTIVE ANALYSIS**





© 2018 SNIA Persistent Memory Summit. All Rights Reserved.

# **OBJECTIVE ANALYSIS**



#### Semiconductor Forecast Accuracy

| Year        | Forecast                          | Actual |
|-------------|-----------------------------------|--------|
| 2008        | Zero growth at best.              | -3%    |
| <u>2009</u> | Growth in the mid teens           | -9%    |
| <u>2010</u> | Should approach 30%               | 32%    |
| <u>2011</u> | Muted revenue growth: 5%          | 0%     |
| <u>2012</u> | Revenues drop as much as -5%      | -2.7%  |
| <u>2013</u> | Revenues increase nearly 10%      | 4.9%   |
| <u>2014</u> | Revenues up 20%+                  | 9.9%   |
| <u>2015</u> | Revenues up ~10%                  | -0.2%  |
| <u>2016</u> | Revenues up ~10%                  | 1.1%   |
| <u>2017</u> | Revenues up ~20%                  | 22%    |
| <u>2018</u> | Strong start supports 10+% growth | TBD    |