

Persistent Memory Use Cases in Modern Software Architectures

Olasoji Denloye, SW Engineer, Intel Corporation

Persistent Memory

Overview

Properties of Persistent Memory

- Byte-addressable like DRAM
- Direct user-level access
- Lowers DRAM footprint
- Works with both File and Memory PM APIs
- Multiple Modes
 - Memory Mode Persistent Memory as Main Memory
 - App Direct Mode OS aware of Persistent Memory

The SNIA NVM Programming Model

Common Use Cases

- Caches
 - Data structures for fast lookup
- Stores
 - Device for persisting data
- Buffers
 - Temporary data storage

- Using Persistent Memory:
 - As volatile memory
 - As persistent memory

Caches

Caches

- Caches are fast and lightweight data structures
- Typically live on DRAM for speed
- Constrained by DRAM size

- Persistent Memory provides larger capacities than DRAM
- Persistent caches give faster restart times

Hbase BucketCache

- Manages buckets of memory containing fixed size blocks
- Moved the cache from DRAM to Persistent Memory
- Uses mapped file based allocator

Read path Write path **BAM** BlockCache MemStore Disk. HFiles WAL data block

https://issues.apache.org/jira/browse/HBASE-21874

source: https://docs.cloudera.com/HDPDocuments/HDP3/HDP-3.1.4/hbase-data-access/content/overview-hbase-io.html

MemcacheD - DRAM

- In memory Key-Value store
- Used as a cache
- Designed to be simple and fast

MemcacheD – Restartable Cache

- Custom mapped file allocator
- Hybrid data structure
 - Hashtable on DRAM
 - Slabs on Persistent Memory
- Restartable
 - Flush CPU caches on controlled shutdown
 - Rebuild Hashtable on restart

https://github.com/memcached/memcached/wiki/WarmRestart

Spark SQL

Spark OAP (Optimized Analytics Platform)

- OAP is a SparkSQL accelerator
- IO cache
- Uses Persistent Memory Development Kit (PMDK) : libvmemcache
 - Open source
 - Volatile LRU cache
 - Keys in DRAM, values on PMEM

SPARK DCPMM FULL SOFTWARE STACK

Storage

Storage

PERSISTENT MEMORY PANUARY 23, 2020 | SANTA CLARA, CA

- Persists data
- Large capacity
- Typically on solid state or spinning drives

- Persistent Memory is faster than
 NVMe/SAS/SATA drives
- Finer grained access : byte vs block
- No need for serialization/deserialization
- Update in place
- Simpler code

Cassandra Write Path

SANTA CLARA, CA

Cassandra Read Path

Read Path – Persistent Memory Storage

Cassandra Persistent Memory Storage Engine

- Uses open source components
 - Low level Persistence Library
 - PMDK
- Adaptive Radix Tree
- Pluggable engine
- 6 8X speedups on reads and writes

• <u>https://github.com/intel/cassandra-pmem</u>

Considerations on Persistent Use of Persistent Memory

- Data Integrity
 - On a controlled shutdown : flush caches
 - On an uncontrolled shutdown (e.g. power failure, crash): transactions
- Concurrency
 - CAS + flush is not atomic
- Fragmentation
 - Existing problem worsened by longer lived memory pools

- Persistent memory is available and valuable
 - Upstreamed in open source projects
- Multiple ways to extract value
 - No code change OR data structure redesign
- Libraries available to help
 - PMDK suite
 - Low Level Persistence Library Java
 - Memory Mapped files

- Hbase Bucket Cache: https://issues.apache.org/jira/browse/HBASE-21874
- <u>MemcacheD:</u>
 <u>https://github.com/memcached/memcached/wiki/WarmRestart</u>
- <u>Spark OAP: https://github.com/Intel-bigdata/OAP</u>
- <u>Cassandra PMEM: https://github.com/intel/cassandra-pmem</u>
- <u>PMDK: https://pmem.io/pmdk/</u>
- <u>Libvmemcache: https://github.com/pmem/vmemcache</u>
- Low Level Persistence Library: https://github.com/pmem/llpl
- <u>Adaptive Radix Tree: https://db.in.tum.de/~leis/papers/ART.pdf</u>

Thank you

Please visit <u>www.snia.org/pmsummit</u> for presentations

Cassandra Pluggable Storage Engine API

Alternate engines or mixture of engines at table granularity

PERSISTENT MEMORY JANUARY 23, 2020 | SANTA CLARA, CA