
Evolution of PMDK
Piotr Balcer, Software Architect, Intel

PMDK Primer

libpmem

libvmem

libvmmalloc

libpmemobj libpmemblk libpmemlog
librpmem

libpmemobj-cpp
libpmemkv

libvmemcache

PERSISTENT USE CASES

VOLATILE USE CASES

pmem.io
github.com/pmem/

Focus of this presentation

Usability

struct node *
linked_list_insert(PMEMobjpool *pop, const char *str)
{

struct base *bp = pmemobj_root_direct(pop, sizeof (*bp));
jmp_buf env;

if (setjmp(env) == 0) {
/* try the transaction... */
pmemobj_tx_begin_lock(pop, env, &bp->mutex);

/* allocate the new node to be inserted */
PMEMoid newoid = pmemobj_alloc(sizeof (struct node));
struct node *newnode = pmemobj_direct_ntx(newoid);

/* fill it in and link it in */
newnode->str = pmemobj_strdup(str);
newnode->next = bp->head;
PMEMOBJ_SET(bp->head, newoid);

pmemobj_tx_commit();

return newnode;
} else {

/* transaction aborted */
return NULL;

}
}

struct base {
PMEMoid head;
PMEMmutex lock;

};

struct node {
PMEMoid str;
PMEMoid next;

};

libpmemobj 0.0.1 API (December 2014)

• Very verbose
• Manual instrumentation
• No type information

associated with objects
• Who even knows what

setjmp() is?

struct node *
linked_list_insert(PMEMobjpool *pop, const char *str)
{

TOID(struct base) bp = pmemobj_root(pop, sizeof(struct base));
struct node *ret = NULL;

TX_BEGIN_PARAM(pop, TX_PARAM_MUTEX, &D_RW(bp)->lock, TX_PARAM_NONE) {
TOID(struct node) newoid = TX_NEW(struct node);
D_RW(newoid)->str = TX_STRDUP(str, 0);
D_RW(newoid)->next = D_RO(bp)->head;

TX_SET(bp, head, newoid);

ret = D_RW(newoid);
} TX_ONABORT {

ret = NULL;
} TX_END

return ret;
}

struct base {
TOID(struct node) head;
PMEMmutex lock;

};

struct node {
PMEMoid str;
TOID(struct node) next;

};

libpmemobj 1.0 API (May 2016)

• Slightly less verbose
• Manual instrumentation
• Some type information

associated with objects
• Transparent transaction

lifecycle

persistent_ptr<struct node>
linked_list_insert(pool_base &pop, std::string str)
{

auto bp = pop.root();
persistent_ptr<struct node> newoid;

try {
transaction::run(pop, [&] {

newoid = make_persistent<node>();

newoid->str = str;
newoid->next = bp->head;

bp->head = newoid;
}, &bp->lock);

} catch (pmem::transaction_error &) {
newoid = nullptr;

}

return newoid;
}

struct base {
persistent_ptr<struct node> head;
pmem::obj::mutex lock;

};

struct node {
pmem::obj::string str;
persistent_ptr<struct node> next;

};

libpmemobj++ API (December 2016)

• Code nearly identical to
volatile

• Minimal instrumentation
• Smart pointers, persistence as

a type-associated property
• Closure transactions

Lesson 1
Persistence introduces a significant change to how programs are written,
anything we can do to make it easier is a win.

• Don’t release too early – it might take a significant amount of time to get to
something good.

• Types are great – it’s easier to add type qualifiers in a few places than it is
to instruments large swaths of code.

• Metaprogramming helps – writing transactions in plain old C is… tricky.
Adding macros helps, but using a language with proper metaprogramming
capabilities makes coding a whole lot easier.

#include <libpmemkv.hpp>

using namespace pmem::kv;

int main()
{

pmemkv_config *cfg = pmemkv_config_new();

int ret = pmemkv_config_put_string(cfg, "path", PATH.c_str());
ret = pmemkv_config_put_uint64(cfg, "size", SIZE);

db *kv = new db();
status s = kv->open("vsmap", cfg);

s = kv->put("key1", "value1");

std::string value;
s = kv->get("key1", &value);

kv->get_all([](string_view k, string_view v) {
LOG(" visited: " << k.data()); return 0;

});

delete kv;
return 0;

}

pmemkv 0.8 API (June 2019)

• Simple and familiar key-
value store interface

• Completely abstracts away
the storage

• Easy to adopt

Lesson 2
Better the devil you know…
We’ve observed more initial interest in intermediate PMEM adoption
solutions such as pmemkv, normal file I/O or volatile approaches than
in libpmemobj.

• A familiar, but constrained, API is significantly easier to adopt than an
unknown one that fully takes advantage of PMEM.

• Specialized solutions (or less general purpose) provide a convenient
starting point to persistent memory, allowing developers to
progressively learn the stack – from simplest to the most complex.

Persistent memory allocator
Most research projects, and libpmemobj, try to use the same
model of dynamic memory allocation that’s used for volatile
memory.

From the API perspective this makes perfect sense, but…

what about fragmentation?

transaction::run(pop, [&] {
root->object = make_persistent<mytype>();

});
root->object = make_shared<mytype>();

PERSISTENT MEMORY VOLATILE MEMORY

Lesson 3
Fragmentation in long-lived heaps can become a significant problem. Most
traditional ways of hiding or dealing with this problem fall short of solving it.
• Defragmentation using virtual memory might eventually lead to a situation

where there are no physically contiguous 4k pages, preventing the use of
huge pages – which might be very important when taking advantage of
large capacities of PMEM.

• Compaction algorithms might require excessive amount of CPU time and
bandwidth (which is limited on PMEM) to properly do its job on terabyte
heaps.

• Applications, if possible, should instrument the allocator with the
information about size of its objects, thus allowing for optimal on-media
arrangement.

Consistency in presence of failures
Constructing failure atomic data structures is a non-trivial task.
Even with libpmemobj and transactions it’s easy to make a
mistake.

$ valgrind --tool=pmemcheck ./app

Number of stores not made persistent: 1
Stores not made persistent properly:
[0] at 0x400794: main (example.c:7)

Address: 0xfff000124 size: 4 state: DIRTY
Total memory not made persistent: 4

$ pmreorder ./app

WARNING:pmreorder:File /tmp/test_ex_pmreorder1/testfile inconsistent
WARNING:pmreorder:Call trace:
Store [0]:

by 0x400CDB: list_insert_inconsistent (pmreorder_list.c:144)
by 0x400E84: main (pmreorder_list.c:185)

Lesson 4
PMEM programming *is* hard.

• Testing through killing an application or pulling the plug on a server, while
useful, does not produce deterministic results and is difficult to debug.

• Define data structure invariants, then verify early and often.

• It might get computentially prohibitive to exhaustively check all possible
memory states an application can be in. So instead of doing that, divide
and conquer - Isolating problems into smaller bits helps reduce the amount
of possible memory states, but also makes reasoning about consistency
easier.

Performance

100.00%

167.49% 199.07%

377.12% 351.09%

511.33% 510.59% 549.66%

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

LIBPMEMOBJ RELATIVE PERFORMANCE ACROSS VERSIONS
(B-TREE BENCHMARK)

Implementing persistent transactions
Since its first version, libpmemobj had three different implementation of undo logs, and at
least once almost the entire transactions module was rewritten.

object object object object object Heap:

object object Allocations:

object object object Free:

snapshot snapshotSet:

Transactional
undo log lists

• Doubly linked lists of objects
• Easy to reason about…
• … but very slow

libpmemobj 1.0

libpmemobj 1.5object

object
object

object

object
Heap:

Intentions: reservation reservation defer free defer free defer free

Set: snapshot snapshot snapshot

Transactional redo log
(initially created on DRAM)

Transactional undo log

• No lists whatsoever
• Hybrid redo/undo

transactions
• Minimal overhead
• Non-committed

actions don’t
use PMEM (allocs, free)

snapshot

Lesson 5
Accessing PMEM is expensive compared to DRAM. Ideas that sound
reasonable for DRAM latencies might not work well for Persistent Memory.

• Individual cache-misses matter, selectively caching variables in DRAM is
often a worthwhile strategy.

• Read bandwidth is higher than write bandwidth. Trading reads for reduced
number of writes makes sense in many scenarios.

• With Persistent Memory disrupting the memory hierarchy, cache oblivious
data structures become even more beneficial.

Copying data to PMEM
memcpy() isn’t enough when it comes to writing performant Persistent
Memory enabled code.

Since the initial version of libpmem, we’ve created two implementations of
PMEM optimized memcpy. And it’s not because our code can potentially be
faster than libc memcpy (it might not). It’s to avoid flushing and unnecessary
store fences.

void *memcpy(void * destination, const void * source, size_t num);

void *pmem_memcpy_persist(void *pmemdest, const void *src, size_t len);

void *pmem_memcpy(void *pmemdest, const void *src, size_t len, unsigned flags);
flags = PMEM_F_MEM_NODRAIN | PMEM_F_MEM_NOFLUSH | PMEM_F_MEM_NONTEMPORAL | PMEM_F_MEM_TEMPORAL

Lesson 6
Non-temporal stores are crucial to achieving decent performance of
persistent memory algorithms.
• Using memcpy implementation that is deterministic w.r.t. usage of NT

stores allows application to avoid cache flushing when cache was
bypassed.

• Cache-line alignment is doubly important. Aligned non-temporal stores can
entirely avoid cache misses that would normally happen with temporal
copies.

• Delaying store fence, normally required after memcpy() with NT
instructions, until data is actually required to reach persistent memory can
yield non-trivial performance improvements, especially when multiple
discontiguous copies are being made.

Persistent memory allocator - again
The second most modified module of libpmemobj, after transactions, is the
allocator. It’s performance is crucial to all parts of the library.

One of the biggest changes we’ve made to it is departure from immediate
persistence model to a delayed one. This means that persistent metadata is
no longer immediately modified to reflect a heap operation, and instead
objects are reserved from purely volatile (held in DRAM) state and persistent
metadata modifications are batched. This led to 64x reduction in metadata
modifications for transactional heap operations in select scenarios,
amortizing the cost.

int pmalloc_construct(PMEMobjpool *pop, uint64_t *off, size_t size,
pmalloc_constr constructor, void *arg);

int palloc_reserve(struct palloc_heap *heap, size_t size, palloc_constr constructor, void *arg,
uint64_t extra_field, uint16_t object_flags, uint16_t class_id,
uint16_t arena_id, struct pobj_action *act);

void palloc_publish(struct palloc_heap *heap, struct pobj_action *actv, size_t actvcnt,
struct operation_context *ctx);

libpmemobj 1.0

libpmemobj 1.3

Lesson 7
Hybrid DRAM/PMEM algorithms tend to have the lowest latency.

• Staging and coalescing PMEM changes in DRAM might be a good idea
when the algorithm repeatedly writes to the same persistent memory
location.

• Preparing data in DRAM and offloading it asynchronously to PMEM might
be beneficial when delaying the main thread is undesirable (e.g., reading
data from a socket to pmem, and processing it in another thread).

• Storage-focused data structures (Fractal Trees, LSM) also make sense for
PMEM when modified to take its properties into account.

Thank you
Please visit www.snia.org/pmsummit for presentations

22

http://www.snia.org/pmsummit

	Evolution of PMDK
	PMDK Primer
	Usability
	libpmemobj 0.0.1 API (December 2014)
	libpmemobj 1.0 API (May 2016)
	libpmemobj++ API (December 2016)
	Lesson 1
	pmemkv 0.8 API (June 2019)
	Lesson 2
	Persistent memory allocator
	Lesson 3
	Consistency in presence of failures
	Lesson 4
	Performance
	Slide Number 15
	Implementing persistent transactions
	Lesson 5
	Copying data to PMEM
	Lesson 6
	Persistent memory allocator - again
	Lesson 7
	Thank you

