

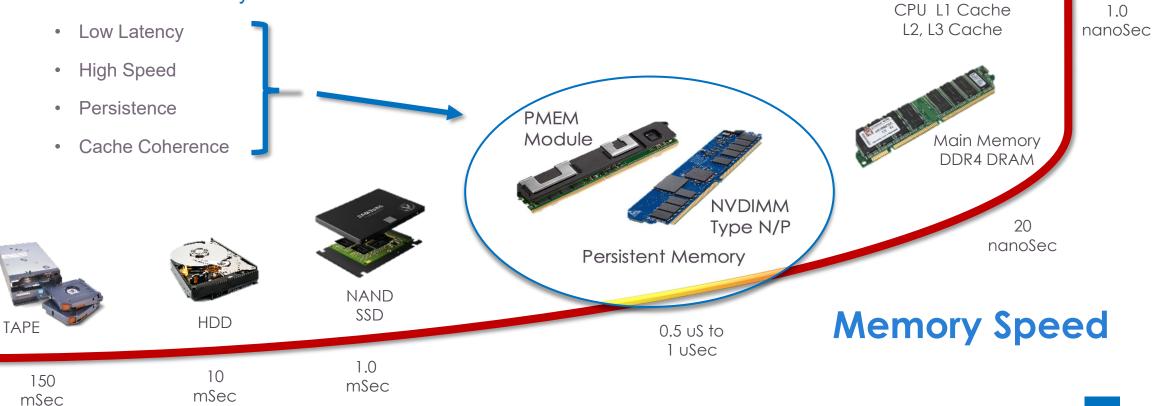
The Challenges of Measuring Persistent Memory Performance

SNIA Persistent Memory Performance Test Specification (under development) - Solid State Storage Technical Working Group

Eduardo Berrocal, Senior Software Engineer, Intel Corp. Keith Orsak, Master Storage Technologist, HPE

1. Introduction SNIA Solid State Storage Technical Working Group

- The Persistent Memory (PM) Performance Test Specification (PTS) is an under development technical work of the SNIA Solid State Storage Technical Working Group.
- The PM PTS is intended to set forth a standardized methodology for the set-up, test and reporting of PM storage performance.
- The PM PTS also lists Reference Test Platforms (RTP) for the test of PM Storage based on commercially available third party servers that support the test methodology and operation of PM as described in the PM PTS.
- The PM PTS is intended to allow application and storage professionals to design, integrate and deploy architectures based on and including Persistent Memory.


Part 1: Persistent Memory Configuration

Storage Access Modes: Data Path, Software Stack Configuration & PM Media

Eduardo Berrocal, Intel

2. Introduction to Persistent Memory

- Memory & Storage is moving closer to the CPU
- Memory & Storage Speeds are increasing
- Persistent Memory (PM) is the newest class of storage
- PM sits on the Memory bus and has:

Con

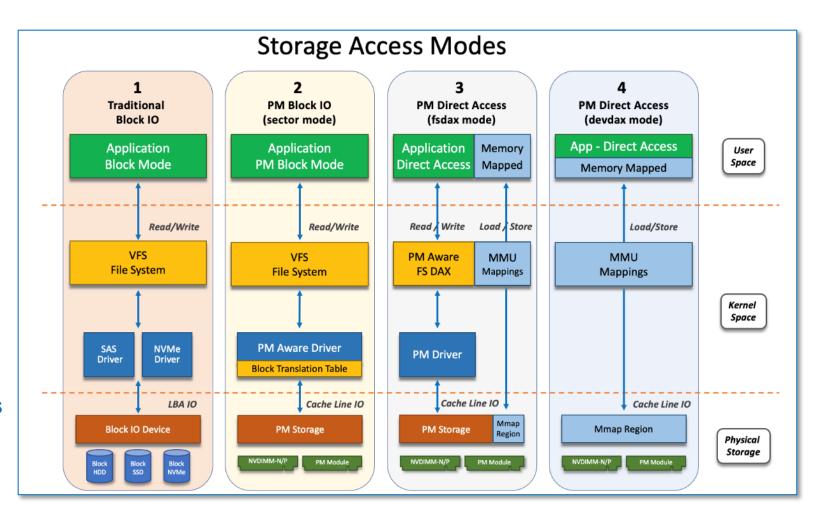
Shared

2. Storage Access Modes - Data Path Perspective PM PTS addresses 3 types of Storage Access Modes (2, 3 & 4 below)

1 - Traditional Block IO

- Shown for reference Only
- Not addressed in PM PTS
- Shows traditional storage access

2 - PM Block IO - Sector Mode


- PM Aware Driver
- Block Translation Table (BTT)
- Sector Atomicity

3 - PM Direct Access w/ File System

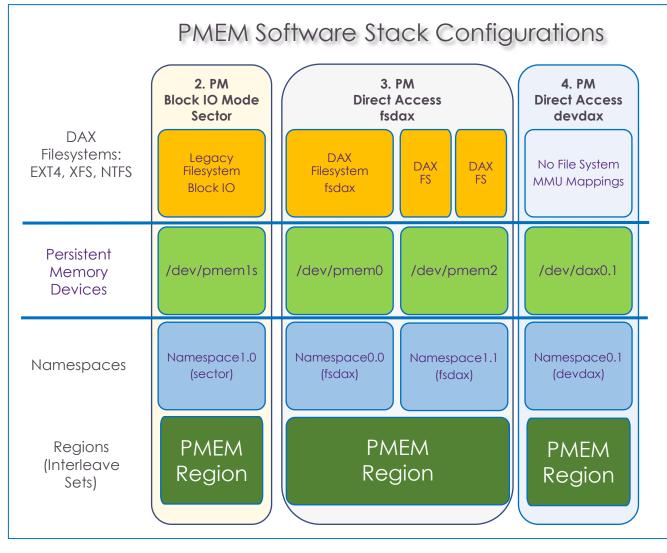
- Application Direct Access
- Memory Mapped
- Uses PM Aware File Systems

4 - PM Direct Access w/o File Systems

- Mmap entire Region
- Used mostly for legacy DAX

3. Storage Access Modes - Software Stack Perspective Linux DAX File System

1 - Configured Region


- Interleaved v Non-interleaved
- Regions: 0, 1, 2 ...

2 - Defined OS Namespace

- Sector
- Fsdax
- Devdax

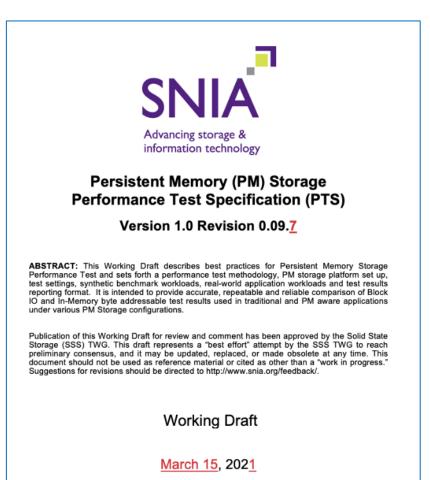
3 - Format File System

• Legacy v DAX FS

4. SNIA PM Performance Test Specification - PM PTS White Paper & Draft Specification

Advancing storage & information technology

Storage Networking Industry Association Technical White Paper


Introduction to SNIA Persistent Memory Performance Test Specification

October 2020

Abstract:

This white paper is targeted at storage professionals familiar with the SNIA Performance Test Specifications (PTS), storage and software architects interested in understanding, testing and designing persistent memory into their storage architectures and Persistent Memory (PM) aware software applications and storage architects and marketing managers interested in PM storage solutions.

Introduction to SNIA Persistent Memory Performance Test Specification White Paper https://www.snia.org/white-paper/introduction-snia-pm-performance-test-specification

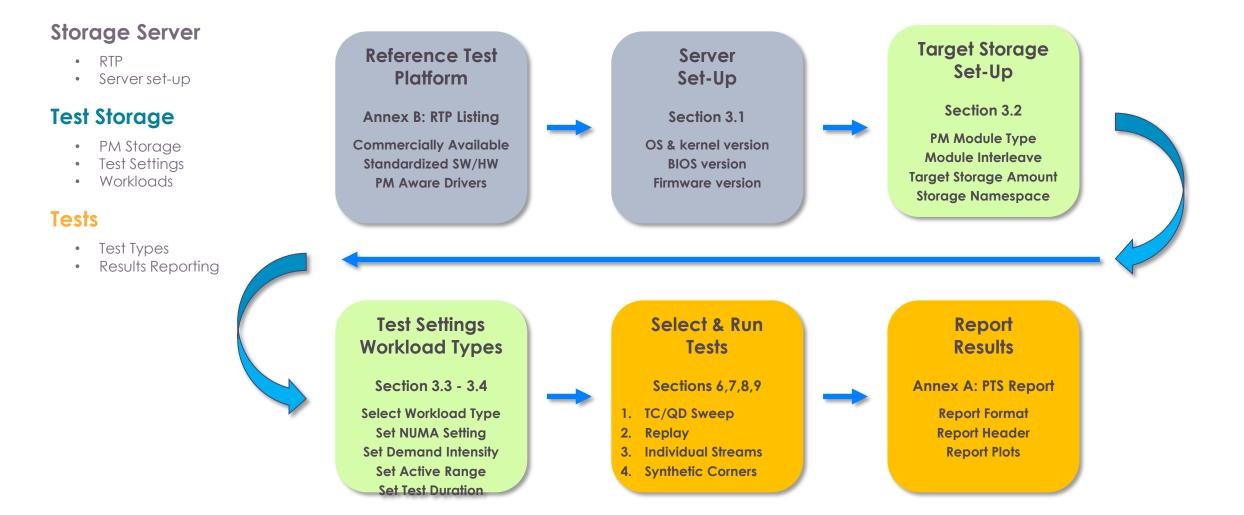
SNIA Solid State Storage Technical Working Group https://www.snia.org/tech_activities/work/twgs#s3

Part 2: PM PTS Test Methodology

Reference Test Platforms, Test Set-up, Test Methodology, Tests, Results & Reporting

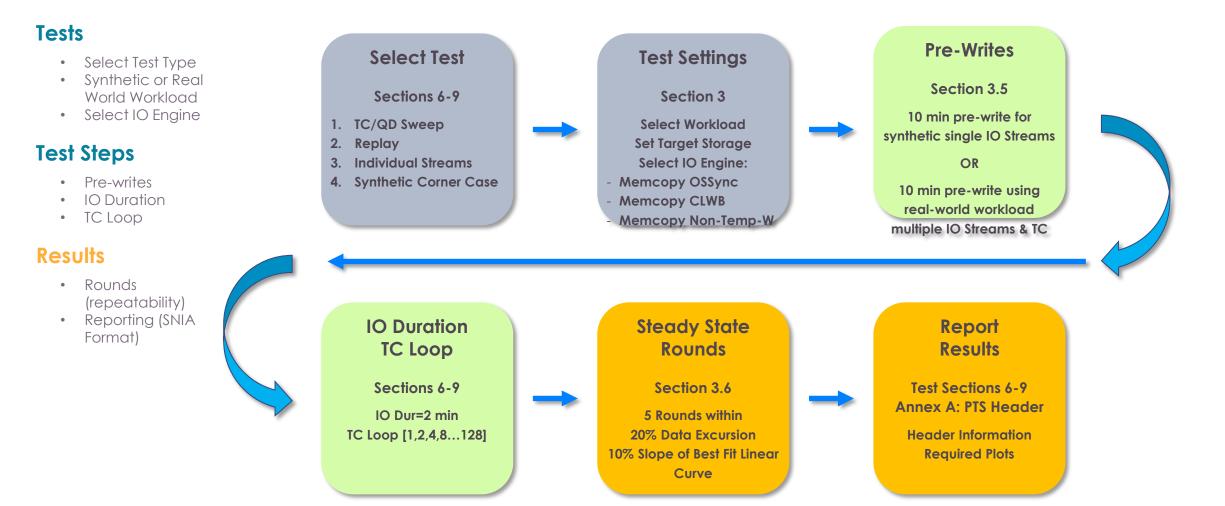
Keith Orsak, Master Storage Technologist, HPE

1. Some Challenges of Measuring PM Performance


- Software stack complexity, including BIOS, Drivers & set-up, can greatly influence the measurement of PM Performance
- Test platform, test software and test set-up affects accuracy, repeatability and consistency
- Selection of IO Engine and workloads are also key to performance
- Note that drive/storage preparation, such as pre writes and steady state, while useful do not have as large an impact on PM performance as occurs with NAND Flash SSD performance.

2. PM Performance Test Specification

Standardized Performance Test of Persistent Memory Preliminary & Preliminary &


Draft PM PTS v1.0: Preliminary & Subject to Change

3. PM PTS - Test Methodology **Test Flow**

Draft PM PTS v1.0: Preliminary & Subject to Change

7. PM PTS - Tests Test Type, Description, Purpose

Comment

- Item
- Item

Comment

- Item
- Item
- Item

Comment

- Item
- Item

Test	PTS	Test	Purpose
Type	Section No.	Description	of Test
Replay	Section 6.0	Apply Sequence & Combination of IO Stream Subset observed	Observe Performance Relative to Actual Real-World Workloads
Thread Count (TC) Sweep	Section 7.0	Apply Fixed Composite IO Streams v TC Sweep to Steady State	IO, Bandwidth, Response Time & Thread Count Saturation
Individual	Section 8.0	Run Observed IO Streams to Steady State	Real-World IO Streams vs
Streams		followed by TC Sweep	Corner Case/Mfgr Specs
Synthetic	Section 9.0	Run Selected IO Streams to Steady State	Synthetic IO Streams vs
Corner Case		followed by TC Sweep	Corner Case/Mfgr Specs

Note: Individual IO Stream is a single IO access pattern consisting of a RND or SEQ access of a R or W IO of a data transfer size - See PTS Specification Definitions. Real-World Workload capture, analysis and workload creation are discussed in the PM PTS, RWSW PTS for Datacenter Storage and the PM PTS White Paper.

8. Reporting Requirements SNIA PM PTS Report Header

Draft PM PTS v1.0: Preliminary & Subject to Change

Comment

- Item
- Item

Comment

- Item
- Item
- Item

Comment

- Item
- Item

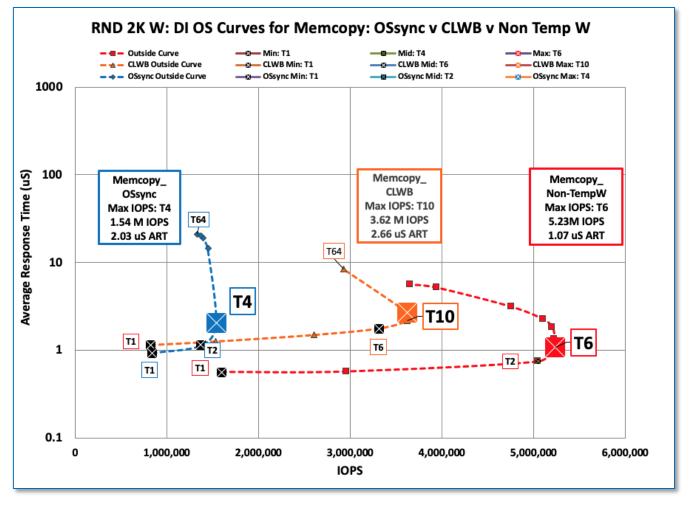
Test Run Date:			11/15/2020 12:08:00 PM			Report Run Date:			12/02/20 11:14 AM			
De	eman	d Intensity	Resp	onse Time	Histo	gram - Thread (Count/Queue De	epth S	weep (RE	QUIR	ED) - Repo	ort Page
SNIA Persistent Memory			DIRTHIC/OD Swee		ep Test: Retail Web Portal 9 IO Strea			Rev.		PM PTS 1.0		
SSS TWG Performance Test Spec (PM I					,,						Page	1 of 12
Vendor:	/	ABC Co.	PM Storage Model: PMEM ABC123 TEST SP						TEST SPON	NSOR XYZ Test Co.		
Test Platform			Device Under Test			Set Up Parameters			Test Parameters			
Ref Test Plat	form	PM RTP Server	r 1.0	Mfgr		ABC Co.	Workload	Rtl	Web Portal	Active	Range	100%
Motherboard Intel Cascade Lake		Lake	Model No.		PMEM 12345678	IO Streams	9 IO Streams		Max IOPS		623,539 IOPS	
CPU	CPU Dual Socket Intel 8176 2.1 GHz		6 2.1GHz	S/N		PA1B2C3-D4E5F6	Max OIO	TC=128/QD=1		010		T8Q1
Memory		128 GB DDR4 2166		Firmware ver		1.00.11.00.11	Min OIO	TC=1/QD=1		5 9s QoS		120 mS
Operating System		RHEL 7.5		Capacity		256 GB	Pre-Conditioning SE		128K W - (10) min Mid IC		PS	604,498 IOPS
Page Size Memory		2 MB T(Total Modules 6		6	Steady State S		S PTS 2.0.1	010		T4Q1
NUMA		Enabled		Interleaved		Interleaved	Data Excursion	120%		5 9s QoS		100 mS
Block / Byte		Block IO		DAS/Remote		DAS	Slope	120%		Min IOPS		158,274 IOPS
IO Access Type		Mmap		LUN		1536 GB	Rounds	Five (1) min Rounds		010		T1Q1
File System		DAX FS		RAID		Striped	Data Pattern		RND Once		s QoS	50 mS
						Pre Condition	ing IOPS Plot					

Note: SNIA format report headers are required for PM PTS reporting. In addition to administrative information, PM PTS headers shall disclose key information on Test Platform, Device Under Test, Set-up Parameters & Test Parameters.

9. Compare IO Engines Memcopy OSSync v CLWB v Non-Temp-W

Draft PM PTS v1.0: Preliminary & Subject to Change

Memcopy_Non-Temp Writes


- Read data goes to cache
- Write data bypasses cache
- Non Temp W assumes data is accessed w/o temporal locality
- Synchronization done in User space by sfence
- Used when you wish to remove the effect of caches on the transfer of IOs

Memcopy_OSSync

- Synchronization is done by calling system calls
- Performance varies between msync, fsync and fdatasync
- Used when you evaluate performance in legacy applications - no control of caching

Memcopy_CLWB

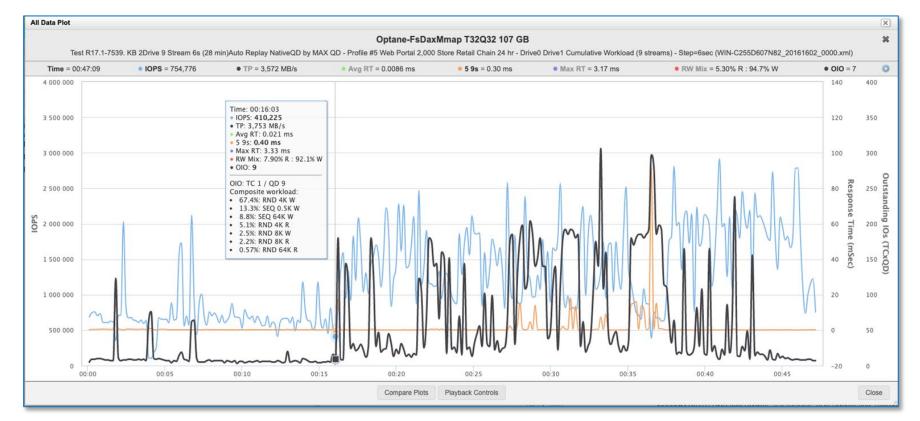
- Cache line write back
- Synchronization done via periodic flushes
- Used when you desire persistent cache write back

Note: Demand Intensity (DI) curves show IO and Bandwidth saturation as Thread Count (TC) is increased. The optimal DI point is where IOPS or Bandwidth is highest and before Response Times begin to dramatically increase

10. Sample Data: Replay Test

Memcopy OSSync: Retail Web Portal - 9 IO Stream 24 he liminary & Subject to Change

IO Streams v Time


- Shows Changing combinations of IO Streams and TC
- Each data point is the average for the 9 IO Streams observed in the IO Capture period

Purpose

- See IO Stream combinations that occur in real world
- See changes over time
- Associate IO metrics with usage

Purpose

- Understand workload content
- Optimize PMEM for IO Stream content
- E.g. direct Reads to PMEM and Writes to DRAM

Note: Replay test shows the application of IOs and Demand Intensity over time. Above shows IOPS, Outstanding IO and 5 9s Response Time Quality of Service over time for a composite 9 IO Stream Retail Web Portal workload.

11. Sample Data: Thread Count Sweep Test Memcopy OSSync: RND 64 byte Write

5,000,000

4,500,000

4,000,000

3,500,000

3,000,000

2,500,000

2,000,000

1,500,000

1,000,000

500,000

0

P6 Writes - IOPS vs Time All Data

Draft PM PTS v1.0: Preliminary & Subject to Change

P11 RND 64B, RW-0% - Demand Variation

16

32

Test Flow

- Pre Writes 10 min .
- TC loop [1,2,4...128]
- Run 5 loops ۰

Results

- IOPS per TC Round ۰
- IOPS per TC average
- Demand Intensity Curve .
- IOPS & ART v Total OIO •

Purpose

- Observer TC, IO & RT saturation .
- Select optimal TC performance ۰
- Observe TC Repeatability

8 Thread Count P14 RND 64B RW-0% - Demand Intensity - Outside Curve P17 RND 64B RW0 IOPS and ART vs TOIO IOPS -ART 0.003 5,000,000 4,500,000 0.0025 4,000,000 3,500,000 0.002 -3,000,000 2,500,000 0.0015 2,000,000 0.001 1,500,000 1,000,000 0.0005 0.5 Mid: T2/Q1 T4/01 500,000 Min: T1/Q1 50 100 300 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 150 Throughput (MB/s) Total OIO - Ave for all TC/OD Note: For RND 64-byte Writes, P6 shows IOPS over time for each Thread Count. P11 shows total IOPS for each TC. P14 shows Demand Intensity Outside Curve. P17 shows IOPS and Average Response Time vs Total Thread Count.

5,000,000

4,500,000

4,000,000

3,500,000

3,000,000

2.500.000

2,000,000

1,500,000

1,000,000

500,000

1

12. Sample Data: Individual Streams Test Memcopy OSSync: Retail Web Portal - 9 IO Stream

Draft PM PTS v1.0: Preliminary & Subject to Change

18.5% 842,361

17.0% 775,127

10.0% 456,175

8.4% 382,972

4.0% 182,251

3.7% 169,571

3.4% 155,798

2.92% 132,777

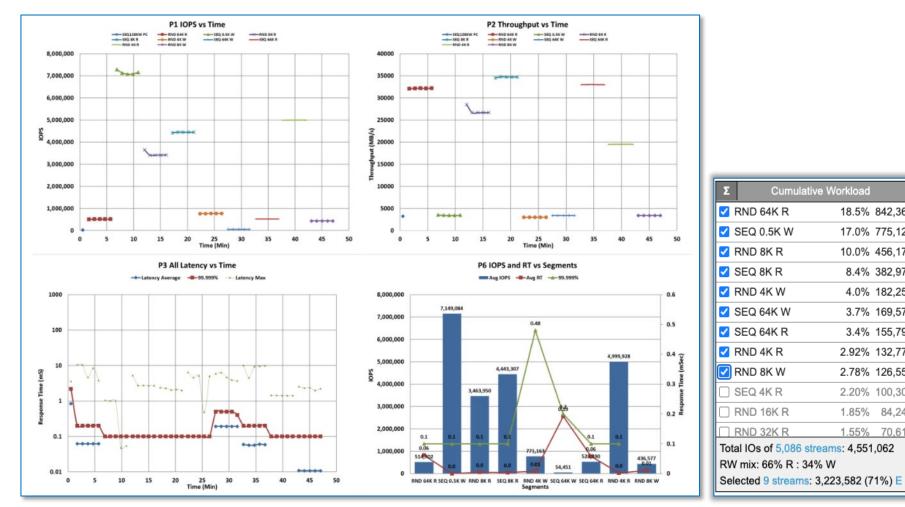
2.78% 126,550

2.20% 100,309

1.85% 84,245

1.55% 70.613

Test Flow


- Fach IO Stream to SS
- Run IO Streams Sequentially

Results

- IOPS, TP & LAT for each IO Stream
- IOPS, ART & 5 9s for each IO Stream

Purpose

- Observe SS • performance of each IO Stream in workload
- Compare IO Stream • performance to mfgr specs

Note: The 9 IO Streams for the Retail Web Portal workload are shown in the Cumulative Workload Description box. P1 shows IOPS v Time. P2 shows Throughput (Bandwidth) v Time. P3 shows Latency v Time. P6 shows Average IOPS and Response Time for each IO Stream.

Conclusion & Call to Action

- This PTS is an extension of previous PTS for NAND Flash SSDs and Real-World workloads
- The PM PTS is designed to allow repeatable, consistent performance comparisons
- The PM PTS is intended to allow application & storage engineers to understand & implement PM
- Reference Test Platforms, OS, BIOS & Drivers are commercially available servers
- Additional information is available in the PM PTS White Paper of Oct. 2020

Call to Action:

- 1. Join SNIA CMSI and/or the SSS TWG
- 2. Submit your Real-World Workload captures to SNIA SSS TWG
- 3. Comment on PM PTS when published for public review at snia.org/feedback

Thank you

Please visit <u>www.snia.org/pmsummit</u> for presentations