

FROM DATACENTER TO EDGE : VIRTUAL EVENT APRIL 21-22, 2021



## **4 Top Use Cases for Big Memory** Today and Tomorrow

Charles Fan, CEO & Co-Founder, MemVerge

### **The Future of Infrastructure**





## **Big Memory Computing for Big and Fast Data**





## Platforms & Apps Needing Lower Cost, Higher Capacity, and HA Memory





### Memory Machine<sup>™</sup> Big Memory without Compromises





#### New Memory Price/Performance

- 30-40% memory cost savings
- Same DRAM-like performance

#### Now Practical to Put all Data in Memory

- Solving performance problems due to datagreater-than-memory (DGM)
- By eliminating IO to storage

#### Unleashes New Class of Memory-based Data Services for Higher Availability and Productivity

- ZerolO<sup>™</sup> in-memory snapshots
- HA with auto save, time machine, replication, and instant recovery
- Higher productivity with cloning of IMDBs
   and ML stages

#### All With No Changes to Your Application!

## **Top 4 Use Cases Today**





# Top 4 Big Memory Use Cases Today Cloud Infrastructure





### VM density is money

© 2021 SNIA Persistent Memory+Computational Storage Summit. All Rights Reserved.

#### Top 4 Big Memory Use Cases Today

## **Big Memory for Virtualized Servers**





#### **Memory Virtualization**

KVM allocates memory from a tiered memory pool of software-defined memory (DRAM + PMEM)

#### glibc compatible

No application change, rewrite or recompile is needed

#### Provisioning on a per-app basis:

Maximum DRAM and PMEM Different DRAM and PMEM ratios Dynamic tuning of DRAM tier size for each VM

#### Resource isolation on a per-app basis

Allocate from different memory pools, avoiding noisy neighbours

#### Monitoring and visualization

of memory usage of multiple physical servers and each app

#### **High performance**

DRAM + PMEM pool at near-DRAM performance

## **Cloud Server Consolidation & Lower TCO**

By Eliminating Noisy Neighbors & Increasing Memory Density





#### 768GB DRAM 245 Servers \$7.65/GB \$2,500 x 245 Servers Total Х \$612,500 \$1,439,424 \$2,051,924 . . . . . . . ...... ....... . . . . . . . . . ....... ....... . . . . . . . ...... .......

#### With Intel® Optane<sup>™</sup> Persistent Memory and DRAM capacity @ 2:1



#### **Memory Machine**

| 90 Servers<br><u>x \$4,500</u><br>\$405,000 | 768GB DRAM<br>\$7.65/GB<br><u>x 90 Servers</u><br>\$528,768 | 1.5TB PMEM<br>\$4.00/GB<br><u>x 90 Servers</u><br>\$552,960 | <u>Total</u><br>\$1,486,728 |
|---------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-----------------------------|
|                                             |                                                             |                                                             |                             |

#### With DRAM DIMMs-Only

# Top 4 Big Memory Use Cases Today Databases







Scaling DRAM to improve performance is **expensive** 



Big memory blast zone is big making recovery from storage slow and **disruptive** 



### **25% Greater Capacity Utilization**





### Installed = 384GB DRAM + 1,536GB of PMEM = 1,920GB



## More & Bigger Shards & Members/Node





#### DRAM + PMEM + Memory Machine





#### DRAM + PMEM + Memory Machine



## **No Memory Virtualization Overhead**





## **Restore Entire Cluster in Seconds**







### Recover from storage



### **Recover from PMEM**



# Top 4 Big Memory Use Cases Today **Genomics**





### **Workload Attributes**

- Large datasets
- Multi-stage pipeline
- Requires frequent checkpoints of intermediary stage results
- Frequent Rollbacks to tune parameters
- Branching to support what-if analyses

### **Pain Points**

- Checkpoint to disk and rollback extremely timeconsuming
- Data loss risk
- Computation memory intensive

## **Big Memory Solution**





### **Memory Snapshots**

- ZerolO<sup>™</sup> snapshot: zero disk I/O
- Instant rollbacks
- Protects against data loss

### Cloning

- Automatic Dedupe via copy-on-write
- Supports multi-branch what-if analyses

### **Memory Capacity**

- Virtualize physical memory types
- Optimized performance

## **Time to Restore a Compute Stage**



#### Time to restore a compute stage for parameter tuning & debugging





#### Mouse Cell Atlas (GSE108097), 176 Samples, Matrix Size 31787 x 813348

Execution time of each analysis stage: compute + storage IO or in-memory snapshot









DRAM+SSD

61%

I/O

# Top 4 Big Memory Use Cases Today Animation & VFX



- Bleeding edge
   visual effects
   provided by
   fragile plug-ins
- Frequent crashes
- Artists out of the zone after 30 seconds



# Top 4 Big Memory Use Cases Today Animation & VFX



### Keeping artists in the zone



"Initially, we opened a poly-dense scene in Maya and it took two-and-a-half minutes. Then, we opened a scene from a snapshot we'd taken with Memory Machine and it took eight seconds. In addition to opening exponentially faster, another benefit of the Memory Machine snapshot is that it gets an artist right to the spot in the application where they were when they created a snapshot, there's no need to repopulate the entire application." - Mark Wright, Technology Manager for Chapeau Studios

## **Tomorrow: Big Memory Unleashes Composable Memory Infrastructure**



"...the ultimate vision of composable infrastructure includes a comprehensive range of disaggregated resources, including multiple processor, memory, cache and storage types. **Today, composable infrastructure is held back by a lack of technology to disaggregate DRAM from processors, industry-standard configurable fabrics** and cross-vendor APIs." – *Gartner: Understand the Hype, Hope and Reality of Composable Infrastructure* 



### Memory Tier Leverages New Technology Without Changes to Apps





## **The New Memory Pyramid**









## Info@memverge.com



# Thank you

Please visit <u>www.snia.org/pm-summit</u> for presentations