

FROM DATACENTER TO EDGE : VIRTUAL EVENT APRIL 21-22, 2021

Security with Computational Storage Drives

David McIntyre Director, Product Planning and Business Enablement Samsung Corporation

Agenda

- Introduction to Computational Storage Drives (CSDs)
- New security risks exposed by CSDs
- Security standards for Computational Storage
- > Addressing risks
 - CSD security features
 - Other features: SW, HW, system-level
- Call to Action

Datacenter Security and Standards

PERSISTENT MEMORY + SUMMIT 2021 COMPUTATIONAL STORAGE

- Standards, Security threats growing in past 10 yrs.
- New Security Standards organizations emerged
 - Open Compute Security Initiative
 - TCG Opal SSC (Enterprise, Device)
 - DMTF SPDM* (Enterprise, Manageability)

- > Data in Flight: Network security
- Data at Rest: Against theft of data or keys, and ransomware (esp. SSD media and key encryption with SSDs
- HW Root of Trust : Dedicated security engine to ensure Secure Boot, Secure FW, and Key Management across all peripherals

Computational Storage Drives (CSD) Overview

 \geq

Potential Computational Storage Drive Implementation and Exposure

FPGA Accelerator, Flash Controller, DRAM, NAND

Peer-to-peer (P2P) communication enables unlimited concurrency

SSD-to-Accelerator data transfers use internal data path

- Save precious L2:DRAM Bandwidth (Compute Nodes) / Scale without costly x86 frontend (Storage Nodes)
- Avoid the unnecessary funneling and data movement of standalone accelerators
- FPGA DRAM is exposed to Host PCIe address space
- NVMe commands can securely stream data from SSD to FPGA peer-to-peer

One View of Host-CSD Framework

New Risks Exposed by Computational Storage Drives

Storage

Computational Storage Drive

(Access via CSP and/or direct to Storage)

Storage

or CSD

Storage

or CSD

(Access via CSP and/or direct to Storage)

Computational Storage Array

Encrypted data mechanisms Auditing.

Generating/ retrieving secure logs

Risks vs standard storage:

Computational

Storage Processor

The CSD may delete/add/modify data on the drive

CSEM

Inction Data Memo

Computational

Storage Drive

AFDM

- The CSD functionality may be programmed
- Virtualization

MGMT

Storage

Controller

Storage

Traditional

Storage Device

1/0

Risks vs external accelerator:

- **Direct access to storage**
- **FPGA** programming

Storage

or CSD

.

- Access to network infrastructure (NVMe-oF)
- Decryption of data prior to processing

Ccomponent level considerations e.g. FPGA

- FPGAs are SRAM based devices which are programmed by secure bit streams
 - Key is programmed via JTAG port
 - Bitstream is encrypted with design tools
 - FPGA identifies encrypt/no encrypt for field testing
- > AES 256 secures bitstream programs
- > Additional Security Measures
 - Design Region Isolation
 - JIT Partial Reconfiguration
 - SOC and Bus Isolation
 - PUF files for device dependency
 - E-fusing

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6849432

Developments in Security for Computational Storage

Work in standards on security for CS

- SNIA Computational Storage TWG
 - Host access and interfaces
 - API standardization in progress
 - Q4'2021 standard (expected)
- NEW: SNIA Computational Storage Security Sub Group
- NVMe Computational Storage Task Group
 - Device access, interfaces and implementation
 - Q1'2022 standard (expected)

Threats

- Storage Infrastructure
- Bypass and Offload
- Computational Engines

Security Considerations by Cloud Service Providers

Notable Cloud Service Provider Security Policy Categories

- Data-in-flight
- Processing requirements in data handling
- Buffering, caching
- Data-at-rest policies
- Containers
- Virtualization
- Multi-tenant
- Edge deployments for in-situ storage processing

Storage Security Pillars

and the standards that mandate them

1. Roots of Trust

allow a system to trust its peripheral components

• Microsoft has enhanced Cerberus RoT features

Cerberus RoT enables:

- Secure Boot
- Secure key storage and protocol for key management
- Advanced security strength with AES 256, ECDSA 384
- Host/Client secure communication via I2C/SMBus
- Security through-out the Lifecycle of SSD Data and Keys

2. Crypto / 3. Secure Enclaves

allow a system to securely handle drive boot firmware and unencrypted keys

2. Crypto

- Cryptography standards are recommended by NIST and FIPS-140 for use in data processing
- FIPS-140 sets the standards for Security Strength Requirements for **CRYPTOGRAPHIC** Modules.

3. Secure Enclaves

- Protection against Physical & Side-Channel attacks are generated with Power monitoring, EMT, and Timing.
- Secure Enclaves are recommended for NIST and Common Criteria (EU) compliance and required by Cloud companies

4. From SED today to Key per IO in the Future

- Host SW encryption with finer granularity for volume
- SED drive encryption all IO blocks for volumes with same key
- FIPS-140-2

- Fine-grain HW encryption (new key per volume, per VM, or per IO)
- Offloads the CPU
- FIPS-140-3
- New SSD controller required

- Level 3 requires physical tamper circuitry inside SSD enclosure
- FIPS-140: US Government Security Requirements for Cryptographic Modules

5. Key Management / 6. Security Lifecycle

allow peripherals to implement and interoperate with security best practices

- TCG DICE is a requirement for Cerberus RoT and enables:
- Attestation protocol
- Secure boot
- Key management

6. Security Lifecycle

Security Lifecycle: Customers have requirements covering every stage from Manufacturing to Cloud Deployment to Infrastructure Decommissioning.

NIST 800-88 and ISO recommends how Keys generated, Crypto Erase and Media Sanitization. TCG Opal Spec recommends standards for Crypto Erase.

Microsoft Cerberus and Google OpenTitan

Cerberus spec is complex & several specifications including custom Azure lifecycle requirements

Security Pillars	Microsoft facebook.	Google	
Root of Trust	Project Cerberus	🔅 opentitan	
	arm		
Crypto Modules	 ✓ AES-256, ECDSA 384 ✓ SHA-512, RSA-4096, 	 ✓ AES-128, ECDSA 256 ✓ RSA 3076, HMAC-SHA2 	
Secure Enclaves	 ✓ Isolated Power Domain ✓ Tamper shield, Temp 	✓Alert Responder	
SED	✓ TCG Opal 2.01 ✓ PSID	✓ TCG Opal 2.01	
Key Management	✓ TCG DICE✓ 768-bits of OTP	√ОТР	
Security Lifecycle	 ✓ DME, PUF, UDS ✓ Crypto-Erase 	✓ OTP fuses	✓Meets highest requirements
Schedule	Microsoft Gen8 1H'21	2022+	✓ Meets minimum requirements

Call to Action: Put On Your Security Hat

- Participate in SNIA Computational Storage TWGs
- > Contribute industry use cases that should be considered for security issues
- > Attend SNIA compute, storage and networking events and think security
- Join the SNIA Computational Storage Security Sub Committee
 - Newly remodeled: Addressing security threats and solutions for our industry!

Thank you

Please visit <u>www.snia.org/pm-summit</u> for presentations