Security with Computational Storage Drives

David McIntyre
Director, Product Planning and Business Enablement
Samsung Corporation
Agenda

- Introduction to Computational Storage Drives (CSDs)
- New security risks exposed by CSDs
- Security standards for Computational Storage
- Addressing risks
 - CSD security features
 - Other features: SW, HW, system-level
- Call to Action
Datacenter Security and Standards

- Standards, Security threats growing in past 10 yrs.
- New Security Standards organizations emerged
 - Open Compute Security Initiative
 - TCG Opal SSC (Enterprise, Device)
 - DMTF SPDM* (Enterprise, Manageability)

Data in Flight: Network security
Data at Rest: Against theft of data or keys, and ransomware (esp. SSD media and key encryption with SSDs)
HW Root of Trust: Dedicated security engine to ensure Secure Boot, Secure FW, and Key Management across all peripherals

*SPDM: Security Protocol and Data Model
Computational Storage Drives (CSD) Overview

Move Compute Closer to Storage

- Moving data between storage and host CPU creates performance bottlenecks for data-intensive applications

Deployment Examples

- Compute/Storage Server
- Smart Cache Layer
- Cloud to Edge Compute

Data processed directly on the CSD => no large data transfers, faster time-to-insight
Adding CSDs adds processing power and internal bandwidth => scalable acceleration

Image Source: SNIA
FPGA Accelerator, Flash Controller, DRAM, NAND
- Peer-to-peer (P2P) communication enables unlimited concurrency

SSD-to-Accelerator data transfers use internal data path
- Save precious L2:DRAM Bandwidth (Compute Nodes) / Scale without costly x86 frontend (Storage Nodes)
- Avoid the unnecessary funneling and data movement of standalone accelerators
- FPGA DRAM is exposed to Host PCIe address space
- NVMe commands can securely stream data from SSD to FPGA peer-to-peer
One View of Host-CSD Framework

In-Band
- Host Server
 - NVMeoF TLS, SSL
- SwitchOS
 - NVMe-ofF Driver
 - TLS, SSL
- Host OS
 - NVMe driver
 - PCIe Root Port
- Data-In-flight
 - NVMe-In-Band Authentication
- Ethernet MAC
- HMAC
- TRNG
- RSA
- SHA2 SHA512
- AES 256/384
- Security CPU
- DICE
- Secure Key Manager
- NAND

Out-of-Band
- Host Server
 - NVMeoF TLS, SSL
- OpenBMC OS
 - NVMe-MI Driver
 - MCTP
 - PCIe Root Port
 - SMBus
- PCIe VDM
- MCTP over SMBus
- Self Encrypted Drive (SED)
 - AES 256/384
 - Read
 - Write
New Risks Exposed by Computational Storage Drives

Security Functions:
- **Authentication.** Host agent to CSD
- **Authorization.** Secure data access & permissions
- **Encryption.** Encrypted data mechanisms
- **Auditing.** Generating/retrieving secure logs

Risks vs standard storage:
- The CSD may delete/add/modify data on the drive
- The CSD functionality may be programmed
- Virtualization

Risks vs external accelerator:
- Direct access to storage
- FPGA programming
- Access to network infrastructure (NVMe-oF)
- Decryption of data prior to processing
Component level considerations e.g. FPGA

- FPGAs are SRAM based devices which are programmed by secure bit streams
 - Key is programmed via JTAG port
 - Bitstream is encrypted with design tools
 - FPGA identifies encrypt/no encrypt for field testing

- AES 256 secures bitstream programs

- Additional Security Measures
 - Design Region Isolation
 - JIT Partial Reconfiguration
 - SOC and Bus Isolation
 - PUF files for device dependency
 - E-fusing

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6849432
Developments in Security for Computational Storage

➢ Work in standards on security for CS

- SNIA – Computational Storage TWG
 - Host access and interfaces
 - API standardization in progress
 - Q4’2021 – standard (expected)

- NEW: SNIA Computational Storage Security Sub Group

- NVMe – Computational Storage Task Group
 - Device access, interfaces and implementation
 - Q1’2022 – standard (expected)

Threats
- Storage Infrastructure
- Bypass and Offload
- Computational Engines
Notable Cloud Service Provider Security Policy Categories

- Data-in-flight
- Processing requirements in data handling
- Buffering, caching
- Data-at-rest policies
- Containers
- Virtualization
- Multi-tenant
- Edge deployments for in-situ storage processing
Storage Security Pillars and the standards that mandate them

1. Root of Trust
 - Microsoft Cerberus
 - Google OpenTitan
 - Intel TXT/TPM

2. Crypto
 - NIST SP800
 - FIPS-140-2
 - GDPR/ISO Requirements

3. Secure Enclaves
 - NIST *CSRC
 - OCP
 - Microsoft

4. Self-Encrypting Drive
 - TCG Opal
 - NIST SP 800

5. Key Management
 - TCG DICE
 - NIST SP 800-57
 - DMTF

6. Security Lifecycle
 - Manufacturing/Vendor Specific
 - NIST SP 800

*NIST: National Institute of Standards and Technology
*TCG: Trusted Computing Group
*FIPS: US Federal Information Processing Standards
*GDPR: EU General Data Protection Regulation
*CSRC: US Federal Computer Security Resource Center
*DMTF: Distributed Management Task Force
1. Roots of Trust
allow a system to trust its peripheral components

Microsoft Storage Server with 40 Cerberus chips

OCP Cerberus RoT

- Enables standard secure boot across all devices on the platform
- Prevents physical and side-channel attacks
- Automated and Secure Key Management

MSFT Cerberus Components

- Microsoft has enhanced Cerberus RoT features
- Cerberus RoT enables:
 - Secure Boot
 - Secure key storage and protocol for key management
 - Advanced security strength with AES 256, ECDSA 384
 - Host/Client secure communication via I2C/SMBus
 - Security through-out the Lifecycle of SSD Data and Keys
2. Crypto / 3. Secure Enclaves
allow a system to securely handle drive boot firmware and unencrypted keys

2. Crypto

- Cryptography standards are recommended by NIST and FIPS-140 for use in data processing
- FIPS-140 sets the standards for Security Strength Requirements for CRYPTOGRAPHIC Modules.

<table>
<thead>
<tr>
<th>Cryptographic Modules</th>
<th>RSA</th>
<th>AES</th>
<th>ECDSA</th>
<th>HMAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security CPU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Security Strength</th>
<th>2030</th>
<th>2030+</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES</td>
<td>AES 128</td>
<td>AES 256</td>
</tr>
<tr>
<td>ECDSA</td>
<td>ECDSA 256</td>
<td>ECDSA 384</td>
</tr>
<tr>
<td>RSA</td>
<td>3072</td>
<td>4096</td>
</tr>
</tbody>
</table>

3. Secure Enclaves

- Protection against Physical & Side-Channel attacks are generated with Power monitoring, EMT, and Timing.
- Secure Enclaves are recommended for NIST and Common Criteria (EU) compliance and required by Cloud companies

SuperMicro hack
Hardware Tampering Side-Channel Attack with Differential Power Consumption

© 2021 SNIA Persistent Memory+Computational Storage Summit. All Rights Reserved.
4. From SED today to Key per IO in the Future

SED
- Host SW has no control
- SED drive encryption all IO blocks with same key.

SW Volume Encryption
- Host SW encryption with finer granularity for volume
- SED drive encryption all IO blocks for volumes with same key

HW Volume Encryption
- Fine-grain HW encryption (new key per volume, per VM, or per IO)
- Offloads the CPU
- FIPS-140-3

- New SSD controller required

FIPS-140-2
- FIPS Level 2 Certification
- 128bit Security Strength
- HW Validation Only

FIPS-140-3
- + FIPS-140-2
- TCG Opal 2.01 Compliance
- 256bit Security Strength
- FIPS Level 3 Certification

- Level 3 requires physical tamper circuitry inside SSD enclosure
- FIPS-140: US Government Security Requirements for Cryptographic Modules

allow peripherals to implement and interoperate with security best practices

5. Key Management

- Key management focuses on protecting keys from threats, and ensuring security of keys thru lifecycle of SSD.

![Key Management Diagram]

6. Security Lifecycle

- Security Lifecycle: Customers have requirements covering every stage from Manufacturing to Cloud Deployment to Infrastructure Decommissioning.

![Security Lifecycle Diagram]

- NIST 800-88 and ISO recommends how Keys generated, Crypto Erase and Media Sanitization. TCG Opal Spec recommends standards for Crypto Erase.

- TCG DICE is a requirement for Cerberus RoT and enables:
 1. Attestation protocol
 2. Secure boot
 3. Key management

© 2021 SNIA Persistent Memory+Computational Storage Summit. All Rights Reserved.
Microsoft Cerberus and Google OpenTitan

Cerberus spec is complex & several specifications including custom Azure lifecycle requirements

<table>
<thead>
<tr>
<th>Security Pillars</th>
<th>Project Cerberus</th>
<th>Google</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root of Trust</td>
<td>arm</td>
<td>openTitan</td>
</tr>
<tr>
<td>Crypto Modules</td>
<td>✓ AES-256, ECDSA 384 ✓ SHA-512, RSA-4096,</td>
<td>✓ AES-128, ECDSA 256 ✓ RSA 3076, HMAC-SHA2</td>
</tr>
<tr>
<td>Secure Enclaves</td>
<td>✓ Isolated Power Domain ✓ Tamper shield, Temp</td>
<td>✓ Alert Responder</td>
</tr>
<tr>
<td>SED</td>
<td>✓ TCG Opal 2.01 ✓ PSID</td>
<td>✓ TCG Opal 2.01</td>
</tr>
<tr>
<td>Key Management</td>
<td>✓ TCG DICE ✓ 768-bits of OTP</td>
<td>✓ OTP</td>
</tr>
<tr>
<td>Security Lifecycle</td>
<td>✓ DME, PUF, UDS ✓ Crypto-Erase</td>
<td>✓ OTP fuses</td>
</tr>
<tr>
<td>Schedule</td>
<td>Microsoft Gen8 1H’21</td>
<td>2022+</td>
</tr>
</tbody>
</table>

✓ Meets highest requirements
✓ Meets minimum requirements
Call to Action: Put On Your Security Hat

- Participate in SNIA Computational Storage TWGs
- Contribute industry use cases that should be considered for security issues
- Attend SNIA compute, storage and networking events and think security
- Join the SNIA Computational Storage Security Sub Committee
 - Newly remodeled: Addressing security threats and solutions for our industry!
Thank you

Please visit www.snia.org/pm-summit for presentations