

Future of Persistent Memory, DRAM and SSD Form Factors Aligned with New System Architectures

Arthur Sainio

Director, Product Marketing, SMART Modular Technologies

Large Datasets Need Memory that Scales

Processor memory and I/O technologies ...

... are being stretched to their limits

More than 2X digital data will be created over the next five years compared to the combined amount since the advent of digital storage (Source; IDC, Mar 2020)

Form Factor Migration

Performance

Direct attached (Parallel Bus) 100's of GB DIMM DIMM NVDIMM-N, NVDIMM-P (Persistent)			Serial attache and PCIe attac 100's of GB to	ched		Network Attached TB's to PB's
		E1.S (x4)		Memory Module	OpenCAPI	
	DDR DIMM	E1.S 1C (x4)	E1.S 2C (x8)	E3.S AIC (x16)	E3 with x8 (2C)	Across network
Current Generation *	DDR4@3200 25.6GB/s	PCIe-Gen4-x4 7.8GB/s	PCIe-Gen4-x8 15.7GB/s	PCIe-Gen4-x16 31.5GB/s	OMI 25.6 GB/s 8 Ianes	RDMA (Fabric and work load dependent)
Future Generation **	DDR5@4800 63.0GB/s	PCIe-Gen5-x4 15.7GB/s	PCIe-Gen5-x8 31.5GB/s	PCIe-Gen5-x16 63.0GB/s	DDR5 DDIMM (TBD) GB/s	Gen-Z, NVMe-oF (TBD)

* Source(s): https://en.wikipedia.org/wiki/PCI_Express#History_and_revisions

https://en.wikipedia.org/wiki/DDR4_SDRAM#JEDEC_standard_DDR4_module

https://www.smartm.com/media/press-releases/smart-modular-to-showcase-its-ddr4-differential-dimm-at-the-flash-memory-summit

** Source(s): https://www.tomshardware.com/news/ddr5-6400-ram-benchmarks-major-performance-gains-ddr4

Form Factors

Direct attached

Network Attached

	(Parallel Bus) 100's of GB		and PCIe at 100's of GB			Network Attached TB's to PB's
	DIMM	E1.S (×4)	E1.S (×8)	EDSFF 3* XMM DRAM Memory Module SMART Redef Tribunger	E3.S (x8)	
	DDR4 DIMM	E1.S with x4 (1C)	E1.S with x8 (2C)	E3.S with x16 (4C)	E3 with x8 (2C)	Network Card
Pins	288 pins (64 data,	56 pins (16 diff-data,	84 pins (32 diff-data,	140 pins (64 diff-data,	84 pins	Media and protocol
	87 sideband, rest power)	16 sideband, 24 power)	18 sideband, 34 power)	24 sideband, 52 power)	(32 diff-data, 18 sideband, 34 power)	specific
Connect or (LxW)	power)		18 sideband, 34	24 sideband, 52	18 sideband,	specific SFP/QSFP/

Serial attached

Bandwidth

Current Generation configuration

Dual socket server with 64 core CPU and 12 x DDR4 channels populated with 128GB DDR4 DIMMs in 2 DIMMs/Channel

Future Generation configuration – 2022 Dual socket server with **96 core CPU** and 12 x **DDR5** channels populated with 128GB DDR5 DIMMs in 2 DIMMs/Channel

- Total Memory = 3TB per server
- Theoretical maximum bandwidth of 614GB/s
- Bandwidth per core = 4.79GB/s

- Total Memory = 3TB (DDR5) + 2TB (CXL) per server
- Theoretical maximum bandwidth of 768GB/s (DDR5)+ 252GB/s (CXL)
- Bandwidth per core = 5.3GB/s (higher even with more CPU cores)

E1.S and E1.L for Memory Acceleration and Expansion

PCIe EDSFF	- 199 7 - 1997	ine g	
q			
		/譜/	u 🔿 '
			a 🔍 .

Feature	Description
Host Interface	 Data: PCIe x4,x8 Sideband: SMBus (I2C) Wake-up, Low-power (PWRDIS),
Memory	64-128GB with DDR4 or DDR5
Protocols	NVMe, CXL, CCIX, Gen-Z
Power	 Multiple profiles from 12,16, 20, 25W Completely bus powered: 12V (main), 3.3V Aux Supports low power modes (CLKREQ#, PWRDIS signaling)
Targeted Use Cases Memory Acceleration and Expansion	 Targeted for 1U Servers 16 – 32 Slots per 1U Server Improves performance by offloading fixed functions like encryption, compression or Key-Value semantics to Memory modules.

E3.S and E3.L for Memory Expansion

	EDSFF 3" XMM
	DRAM Memory Module
	SMART
	SMART Noted Technologies
2	

Feature	Description
Host Interface	 Data: PCIe x16 Sideband: SMBus (I2C) Wake-up, Low-power (PWRDIS),
Memory	Up to 256GB with DDR4 or DDR5 * Non-volatile persistent memory feature could be support on this form-factor using back-up and restore functionality like in NVDIMM-N.
Protocols	NVMe, CXL, CCIX, Gen-Z
Power	 2 profiles 25W (thin) and 40W (thick) Bus powered: 12V (main), 3.3V Aux Supports low power modes (CLKREQ#, PWRDIS signaling)
Targeted Use Cases Memory Expansion	Targeted for 2U Server Enables 4TB – 8 TB of Memory expansion with 16 E3.S modules in single 2U server, achieving better throughput than direct attached DDR4 DIMM.

OpenCAPI High Bandwidth Memory - DDIMM

Feature	Description
Host Interface	• OpenCAPI
Memory	• Up to 256GB
Protocols	 OMI – Open Memory Interface The memory bus is defined with one read port and one write port per channel, each having eight unidirectional differential lanes
Performance	 DDR4-3200 Latency 40ns Data throughput rate of 25.6GB/s with 8 lanes The DDIMM/OMI approach delivers up to 4TB of memory on a server at about 320GB/second or 512GB at up to 650GB/s sustained rates.
Targeted Use Cases	 Targeted for servers High bandwidth, low latency serial connection for memory, accelerators, network, storage, and other devices like ASICs

NVDIMM for Persistent Memory

Key Features of DDR4 and DDR5 NVDIMM-N

- Operation like DRAM
- Fast recovery from system power loss
- Software overhead can be eliminated

Backup Power

Feature	Description
Host Interface	• DDR
Memory	• DDR4 16GB, 32GB • DDR5 32GB, 64GB
Protocol	• JEDEC Compliant DDR4 / DDR5
Features	 Throughput of 25.6GB/s (DDR4) Latency ~20ns AES 256 bit Encryption
Targeted Use Cases	 All Flash Arrays, Storage Servers, HPC, Al Training Servers Needed for very low latency tiering, caching, write buffering, metadata storage, checkpointing Needed for AI/ML algorithm processing

CXL-based NVDIMM (NV-XMM)

Source: Modified from PIRL 2019, "Accelerate Everything", Stephen Bates, Eideticom

High-speed DRAM with built-in back-up power to back-up data to on-module Flash during power loss.

Source: PIRL 2019, "Accelerate Everything", Stephen Bates, Eideticom

Conclusions

Future of Persistent Memory, DRAM and SSD Form Factors

Thank you

Please visit snia.org/pm-summit for presentations

0

CIC EDSFE