Practical Computational Storage: Performance, Value, and Limitations

Brad Settlemyer, Sr Scientist, Los Alamos National Laboratory
Outline

• A brief introduction to HPC Storage
• What does it mean for computational storage to be practical?
 • Problems CS* addresses, deployment
• What does performance for computational storage mean?
 • Does relocating a processor from a motherboard to an SSD really help?
• How can we evaluate the value of computational storage?
 • Processors here, processors there, what’s the difference …
• What are the practical limitations?
 • Deployment considerations, CS* as a service vs CS
A Brief Overview of HPC Storage
A Simplified HPC Platform

Compute/Clients | BB/PFS Routers | IO Backbone (Infiniband)

PiBs of RAM

10s of PiBs of Flash

100s of PiBs of Disk

Lustre OSS

Lustre/ZFS OST

Lustre MDS

Lustre/ZFS MDT
A Next Generation HPC Platform

Data Services
- Lustre Servers
- Specialized S/W Stacks
- Pmem Connectors
- FS Gateways
- NVME Fabrics Enclosures
- (80 - 100 PBs of Flash)

Campaign Storage
- (100s of PB)

Tape Archive
- (100s of PB)

Compute/ Clients

I/O Gateways (optional)

IO Network (RDMA Capable)

(10s PiBs of Advanced Memory Tech)

© 2021 SNIA Persistent Memory + Computational Storage Summit. All Rights Reserved.
HPC Storage Challenges

• Petascale (and now Exascale) leverage **scale-out** to achieve high performance

 • CPU frequency gains are long gone (2002 P4 was 3GHz – just like today)
 • From 1,000s of cores to 1,000,000s of cores
 • A few exceptions:
 • HCA latencies have decreased (but switch latencies not as much)
 • GPUs brought fast context switches (but require thread scale-out)
 • While benchmark FLOPs increased, efficiency has worsened!

• How do you solve a fixed-size problem faster?
• How do you make a storage system faster without making it bigger?
Fast Data Services

Computational Storage as an enabling technology
The Hard Thing about Strong Scaling

- Limitations of weak-scaling
 - We want to solve existing problems faster, not just make them bigger
 - What if I want to store a 100GB file as quickly as possible?
 - With more than a few thousand disks you become latency/layout bound …
 - And with NVME SSDs you just move to the next bottleneck, memory bandwidth

- The pursuit of one time step functions
 - Synchronous runtimes -> Asynchronous runtimes
 - DDR -> HBM
 - Which brings us to Computational Storage …
Computational Storage Examples

- **Computational Storage Device**
- **Computational Storage Processor**
- **Computational Storage Array**

© 2021 SNIA Persistent Memory+Computational Storage Summit. All Rights Reserved.
Enabling New Step Functions

• Computational Storage is not in and of itself a step function
 • High-quality, line-rate compression is a step function
 • High-quality, low-overhead index creation is a step function
 • And many more …

• In general
 • CSDs deliver benefit when data can be semantically interpreted at the device
 • CSPs deliver benefit by providing efficient processing capabilities along data path
 • CSAs deliver benefit for complex computational storage services

• But I said practical, so let’s be specific …
Step Function: File System Services

Intel Platinum (Dual Socket)
AMD EPYC (2nd Gen)
AMD EPYC (1st Gen)
Step Function: File System Services Offload

- Increase compression rates from 1.06:1 -> 1.3:1 for scientific data
 - From 6% to 30% is a 5x improvement? No, that’s not how math works
 - LANL is a bit unlucky we don’t see more benefit
- Enable complex coding/decoding to protect against correlated failures
 - Dynamically choose which operations to accelerate
- Achieve higher per-server and per-device bandwidths
 - Approaching line-rate
- Lower server costs and quantities
Step Function: Near-Storage Analytics

Overheads for streaming index creation (IMD) versus no indexes

Query performance with indexes (IMD) versus no indexes
Step Function: Near-Storage Analytics

- Speedups for post-hoc analysis (1000x speedup demonstrated)
- Post-hoc index creation (speculative)
- Less reliance on massive compute tier as a large merge sort space
- More agile access to data (less time waiting in scheduler queue)
Evaluating Value
Computational Storage Value

• Moving CPU to NIC/SSDs is not obviously better
 • And definitely not obviously cheaper
 • But it might be, how do we evaluate

• Two trends to consider
 • Specialized CPUs (custom ARM, RISCV, DPU, FPGA, etc) becoming common
 • Scaling with respect to servers not appropriate for all workloads

• New storage interfaces make system design harder
 • More degrees of freedom (no longer minimize number of servers)
 • With these interfaces we can minimize all services simultaneously and independently
Computational Storage Value

- Consider the following LANL data services
 - File services with compression, decompression, checksum, erasure coding
 - Encryption, dedupe are also relevant
 - Key-value services supporting compaction, open queries, and closed queries
- How do we minimize cost for:
 - 100GB/s file write throughput
 - 100M 4K IOP reads
 - Critical rebuilds (simultaneous reads and writes)
Value Depends Upon Price

One case for separate servers/ebofs - allows any balance of bw and capacity

<table>
<thead>
<tr>
<th>rs2-12_ne0-0_mcap_ncmp_minwbw</th>
<th>rs3-24_ne0-0_mcap_ncmp_minwbw</th>
<th>rs1-0_re1-24_mcap_ncmp_minwbw</th>
</tr>
</thead>
</table>

MaxFSRBW Server Based OP/$

- Uncompress
- Accelerators
- Problem fixed

© 2021 SNIA Persistent Memory+Computational Storage Summit. All Rights Reserved.
Other Practical Consideration

The boring stuff
Challenges for New Storage Architectures

• Userspace access to storage devices
 • HPC networks have offered user-space networking (including RDMA) for decades
 • User-space access to storage will be similarly disruptive to HPC
 • How to accomplish this is still very unclear …

• Beyond block-level services
 • New interfaces such key-value, object, etc need to be grounded in user requirements
 • But
Challenges for New Storage Architectures

• New interfaces need to provide better services
 • Researchers have spent years exploring the tradeoffs within block-level services
 • New interfaces hold the promise of semantic interpretation of data
 • But reliability

• Beyond block-level services
 • New interfaces such key-value, object, etc need to be grounded in user requirements
 • But
Closing
Conclusions

• Computational storage offers performance benefits in several practical scenarios

 • Where data transformations limited by memory bandwidth
 • File processing pipelines, complex file formats, multi-pass algorithms

 • Where large degrees of data reduction possible
 • Highly selective queries, compression

 • These aren’t hypothetical benefits, we are actually achieving these benefits with computational storage!

• Computational Storage can deliver value to LANL use cases

 • More cost-effective way to purchase memory bandwidth

 • Eliminates server-mediated restrictions on storage access
Conclusions

• Value is governed by interest
 • Understand which metrics you care about, and design to those metrics

• Computational Storage Skepticism
 • Often hear about past failures of active storage
 • Practical deployment problems do exist
 • But maybe this time is different …
Thank you

Please visit www.snia.org/pm-summit for presentations