Compute Express Link™ (CXL™): Advancing the Next Generation of Data Centers

Alan Benjamin, CEO, GigaIO
Industry Landscape

Proliferation of Cloud Computing

Growth of AI & Analytics

Cloudification of the Network & Edge
Industry Open Standard for High Speed Communications

180+ Member Companies
CXL 2.0 Usage Models - Recap

Caching Devices / Accelerators
- Type 1
 - DDR
 - Processor
 - CXL
 - CXL.io
 - CXL.cache
 - Accelerator
 - NC
 - Cache
- Usage:
 - PGAS NIC
 - NIC atomics

Accelerators with Memory
- Type 2
 - DDR
 - Processor
 - CXL
 - CXL.io
 - CXL.cache
 - CXL.memory
 - Accelerator
 - HBM
 - Cache
- Usage:
 - GPU
 - FPGA
 - Dense computation

Memory Buffers
- Type 3
 - DDR
 - Processor
 - CXL
 - CXL.io
 - CXL.memory
 - Memory Buffer
 - Memory
- Usage:
 - Memory BW expansion
 - Memory capacity expansion
 - Persistent memory
Persistent Memory is a Key CXL Usage

Caching Devices / Accelerators

- Processor
- Accelerator
- Cache

Protocols: CXL, CXL.Cache

Usages:
- PCIe NC
- NC aware

Accelerators with Memory

- Processor
- Accelerator
- Cache

Protocols: CXL, CXL.Cache, CXL.memory

Usages:
- GP GPU
- Dense computation

Memory Buffers

- Memory
- Memory Buffer
- Memory

Protocols: CXL, CXL.memory

Usages:
- Memory BW expansion
- Memory energy expansion
- Persistent memory
What is the Fabric Technology for Disaggregated & Heterogeneous Computing System?

- CXL fabric can be a key element for composable DC infrastructure
 - CXL.io for flexible path / CXL.mem for short latency & high bandwidth / CXL.cache for tightly aligned to the host
- Peer-to-Peer function helps system to enjoy higher bandwidth and lower latency with CXL based devices

Transition of Fabric Technology: PCIe → CXL

PCIe-based Rack-Scale Computing
scaling beyond enclosure, thanks to:
- memory semantic and P2P

CXL-based Rack-Scale Computer
easier scaling beyond enclosure, thanks to:
- cache coherency and memory management
Persistent Memory (PMEM)

- Characteristics and benefits of Persistent Memory (PMEM)
 - Byte-addressable (vs. NVMe is block addressable)
 - Generally, lower latencies compared to SSD
 - Cacheable (vs. NVMe is uncached)
 - Data persists across power loss (vs. DRAM loses its content)
 - Generally, larger capacity (vs. DRAM)

- Many Workloads benefit from PMEM
 - Traditional Databases – Accelerated logging/journaling, instant recovery
 - Analytics/AI/ML – real time access to large datasets, faster checkpointing
 - Storage – caching, tiering, ..
 - HPC – Reduce checkpointing overhead
 - and more ..
CXL Protocol is Well Suited for PMEM

- CXL mem protocol is transactional, see below
 - PMEM media may have longer latencies, or variable access latencies
 - Controller can hide longer and/or variable access latencies
- CXL mem abstraction
 - Memory Controller and media are abstracted
 - Enables new and innovative media types
- CXL 2.0 introduces memory QoS
 - Device can synchronously report how loaded it is
 - Can prevent head of line blocking in heterogenous memory configuration (e.g. DRAM + PMEM)
- CXL 2.0 adds Memory Interleaving, a standardized register interface and Global Persistent Flush (GPF)
CXL Supports Interleaving of Memory Devices

- Interleaving is a performance feature
- Example: 8-way interleaved device
- How it works
 - CXL Host Bridge HDM Decoders configured to select one of two Root Ports based on A[12]
 - HDM Decoders in every switch configured to select one of four DSPs based on A[11:10]
 - HDM Decoders in the device configured for 8 way interleave at 1K
 - Device removes A[12:10] from the Host Physical Address when computing the Device Physical Address
Memory Interleaving Enhancements

- CXL 2.0 specification defined 2, 4 and 8-way interleaving options
- This ECN introduces 3, 6, 12 and 16-way interleaving options
 - Matches interleaving options that are available with native DDR
 - Sweet spots that CXL 2.0 spec missed
- No impact to Switches
- 3, 6 and 12-way interleaving implies 3-way math
 - Hosts support mod3 to select one out of 3 (or 6 or 12) targets
 - The device needs to implement divide by 3 (or 6 or 12) operation on HPA
- The ECN limits the legal combinations
 - Limits scope
 - Avoid potential address aliasing when mixing 2 way and 3-way math
- 6 way interleaving across 6 Root Ports shown here
12-way Interleave

- A more complex, 12-way interleaving example shown here
- Cross-host Bridge logic picks one CXL Host Bridge out of 3 at 1K granularity
- Each CXL Host Bridge picks one Root Port out of 2 at 512B granularity
- Each USP selects one DSP our of two at 256B granularity
- The device performs a divide by 12 operation during HPA to DPA conversion
- Contiguous address bits used for interleave selection
A sneak peak into the CXL 3.0 Specification

Industry trends

- Use cases driving need for higher bandwidth include: high performance accelerators, system memory, SmartNIC and leading edge networking

- Interconnect needed that can optimize system level flows among those components with advanced switching, efficient P2P and fine-grained resource sharing across multiple domains

CXL 3.0 features will have...

- Double bandwidth
- Improved capability for better scalability and improved resource utilization
 - Enhanced memory pooling and enables new memory usage models
 - Multi-level switching with multiple host and fabric capabilities and enhanced fabric management
 - New symmetric coherency capabilities
 - Improved software capabilities
- Fully backward compatible with CXL 1.0, CXL 1.1, CXL 2.0
- Specification available 2022
In Summary

CXL Consortium
momentum continues to grow
• 180+ members and growing
• Responding to industry needs and challenges

CXL is ideal for attaching Persistent Memory
• The protocol designed with PMEM in mind, media-agnostic
• Generic driver model eases SW enabling
• Robust RAS and reliability features
• Variety of form factors enable innovative system designs

Call to action
• Join CXL Consortium
• Follow us on YouTube, Twitter and LinkedIn for more updates!
Thank You