'-‘(PERSISTENT MEMORY

S+ SUMMIT 2022

v COMPUTATIONAL STORAGE

VIRTUAL EVENT = MAY 24-25, 2022

Enabling Memory
Tiering in CachelLib

Daniel Byrne, Sergei Vinogradov, Igor
Chorazewicz, and Tomasz Paszkowski

Intel Corporation

Outline

= Why do we need memory tiering?

= Introduction to CachelLib

= Support for heterogenous memory in CachelLib
« Performance analysis

= Potential solutions to measured overhead

= Future directions

= Conclusion

F.4 PERSISTENT MEMORY
= + SUMMIT 2022

2 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved. U COMPUTATIONAL STORAGE

A
Why Memory Tiering?

Graph Cache Leader Workload

= New memory technologies such as
Compute Express Link (CXL) offer a

wide range of use cases
= Memory expansion in a single server
= Dynamic memory pooling across nodes

0.75- —

Higher TCO

. 2
= CXL can reduce cost of infrastructure g, ., " Same TCO
* Increased memory utilization (dynamic T memory)
memory pooling) | default hit ratio
= Reduced variants of server configurations o2y /Tcow for this workload
. /" CXL/PMEM
= Persistent memory offers more /
memory capacity at lower cost ool /

0 10 20
Cache Size (millions of objects)

r_< PERSISTENT MEMORY

= + SUMMIT 2022

3 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved. U COMPUTATIONAL STORAGE

.,
Introduction to CachelLib

* CachelLib was developed by Meta and released as OSS in 2021

* CachelLib is a caching library — can run in-process or as a part of a network stack
for remote access

auto item_handle = cache->find("keyl");

if (item_handle) {
auto data = reinterpret_cast<const char*>(item_handle->getMemory());
std::cout << data << '\n’;

}

// getMemory can block if handle is not ready
auto handle = cache.find("foobar");
handle.onReady(processItem);

F.4 PERSISTENT MEMORY
= + SUMMIT 2022

4 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved. v COMPUTATIONAL STORAGE

Introduction to CacheLib — Memory Organization

SlabAllocator MemoryPool MemoryPool
(PoollD_A0) (PoollD_BO0)

Slab (4MB
:) LRU LIST LRU LIST
Slab (4MB)

Slab (4MB)

Slab (4MB)
Slab (4MB) LRU LIST LRU LIST

5] ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Memory is divided into independent
pools

Each pool contains independent
allocation classes

Items are organized logically into
allocation classes by their respective
size in bytes

Allocation classes follow a geometric
sequence (96, 144, 216, 328 ...)

On eviction the LRU item for that class
IS removed

F.4 PERSISTENT MEMORY
= + SUMMIT 2022

v»» COMPUTATIONAL STORAGE

https://github.com/pmem/CachelLib

Heterogenous Memory Support

Today: User-space memory tiering

m - w
——> L |
Promotion Promotion Promotion

A

 What changed:

» Config APl was extended to allow configure memory tiers
= No user-visible changes to the CachelLib applications

= Re-use existing eviction mechanisms

 Promotion among tiers is WIP

r_< PERSISTENT MEMORY

= + SUMMIT 2022

6 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved. % COMPUTATIONAL STORAGE

https://github.com/pmem/CacheLib

Memory Tiers Configuration

#include “cachelib/allocator/CacheAllocator.h”
std: :unique_ptr<Cache> cache;
facebook: :cachelib: :PoolId default pool;

void initializeCache() {
Cache: :Config config;
config
.setCacheSize(12 * 1024 * 1024 * 1024); // 12 GB - total size
.setCacheName("My cache");
// configure DRAM to have 4GB and PMEM to have 8GB

.validate();
cache = std::make_unique<Cache>(config);
default pool = cache->addPool(
"default", cache->getCacheMemoryStats().cacheSize);

}

7 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

PERSISTENT MEMORY

S "+ SUMMIT 2022
w

COMPUTATIONAL STORAGE

Multi-tier Memory Organization

eviction

SlabAllocator MemoryPool MemoryPool

MemoryPool MemoryPool
(PoollD_A) (PoollD_B) SlabAllocator

(PoollD_A) (PoollD_B)

Slab (4MB)

Slab (4MB)

LRU LIST LRU LIST LRU LIST

Slab (4MB) Slab (4MB)

Slab (4MB) Slab (4MB)
Slab (4MB)

Slab (4MB) LRU LIST LRU LIST

Slab (4MB)

Slab (4MB) LRULIST LRU LIST

« Memory pool and allocation classes are mirrored on each layer
 New elements are always inserted in topmost tier (if possible)
» Individual objects can be moved between tiers (evicted) on insert() or find() function
* Requires locking LRU list in source and target tiers F.o¢ PERSISTENT MEMORY
Z . + SUMMIT 2022

8 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved. OMPUTATIONAL STORAGE

Benchmarks and system configuration

= 2x 3rd Gen Intel® Xeon @ processor * Benchmarks used from Cachebench:

(28core @ 2.60GHz) " Follower - | |
= https://github.com/byrnedj/CacheLib/blob/bg a
= 256 GB (16 slots/16GB/3200) total nd/ ht'tt fort_ s/nia/cachelil?]/cafcr;lebenc?éteg_t/ CO?_fi
gs/hit_ratio/graph _cache follower fbobj/config.
DDR4 memory fson
= 2 TB (8x256GB) NMB1XBD256GQS = Leader:
Intel® Optane™ PMEM (Barlow Pass) = https://github.com/byrnedj/CacheLib/blob/bg_a
: nd tt for_snia/cachelib/cachebench/test confi
= CentOS Linux release 8.5.2111, gs/hit_ratio/graph_cache leader fbobj/config.js
kernel v5.17.5 W'th% '
. . . " ith memory tiers:
= Cachelib compiled with gcc v8.5 . usePosixShm: true
= Microcode 0xd000332 with = [ltier 1
HyperThreading and Turbo [{ ratio: 1, file:"/dev/shm/tier1” },
/ltier 2 (if enabled)
= Tested by Intel on 05/03/2022 { ratio: 1, file:"/mnt/pmemO0/tier2” }]

F.4 PERSISTENT MEMORY
= + SUMMIT 2022

9 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved. % COMPUTATIONAL STORAGE

https://github.com/byrnedj/CacheLib/blob/bg_and_tt_for_snia/cachelib/cachebench/test_configs/hit_ratio/graph_cache_follower_fbobj/config.json
https://github.com/byrnedj/CacheLib/blob/bg_and_tt_for_snia/cachelib/cachebench/test_configs/hit_ratio/graph_cache_leader_fbobj/config.json

Initial Benchmarking Results for Lookaside Cache Workloads

GET Throughput (normalized to DRAM single tier)

follower

leader

follower

leader

1.00+
higher is better
0.754

0.50-

0.25-

0.00+

DRAM Multi PMEM
Tier
50% DRAM

50% PMEM

DRAM

Multi
Tier
50% DRAM
50% PMEM

PMEM

@ I~
=) wn

GET Latency (normalized to DRAM p50)
N
wn

0.0+

¥ pso [po0 [p99

i

)

lower is better

'

Multi
Tier
50% DRAM
50% PMEM

PMEM

DRAM Multi PMEM
Tier

50% DRAM

50% PMEM

= Graph Cache Leader - 0.42 hit ratio, 71.6M keys, 240M requests

= Graph Cache Follower — 0.91 hit ratio, 37.2M keys, 240M requests
= 8GB total cache size (4GB DRAM + 4GB PMEM for multi-tier)

= 24 requesting threads

ERSISTENT MEMORY

r, P
S+ SUMMIT 2022
w» COMPUTATIONAL STORAGE

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/Performancelndex .

10 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

http://www.intel.com/PerformanceIndex

VTune Performance Analysis

* Hotspot analysis report summary from VTune

LRU lock contention!

Grouping: | Function / Call Stack

Function / Call Stack CPU Time ¥ B
) folly:-detail:-distributed_mutex:: spin<folly::detail:-distributed _mutex:‘Waiter<std:-atomic>> 36.404s D

folly:-hardware_timestamp 28 095 D
folly::detail distributed_mutex::publish=folly::detail: distributed_mutex::Waiter=std::atomic== || 13.632z (I
facebook cachelib:RefcountWithFlags: getRaw 5950:
__memmove_avx_unaligned_erms 4111s B
facebook::cachelib: CacheAllocator<facebook::cachelib::LruCacheTrait=findEviction 2623z

std::_ atomic_base<unsigned int>:operator&= 2277 0

tfaceboolk:cachelib . CacheAllocator<=facebook: .cachelib.LruCacheTrait= allocatelnternalTier 2195z
facebook::cachelib:: DListHook=facebook::cachelib:: Cacheltem=facebook cachelib::LruCache, 2.018s |
folly:-detail-atomic_fetch_set x86<unsigned long= 1.991s |
folly::detail.-double_radix_sort_rec 1.924s)
facebook::cachelib::ChainedHashTable: :Container<facebook: cachelib::Cacheltem=facebook] 1.849s |

F.4 PERSISTENT MEMORY
= + SUMMIT 2022
w

11 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved. COMPUTATIONAL STORAGE

Testing the impact of always locking LRU queue

12 follower eacet = tryLockUpdate — controls
higher is better whether update LRU list on
lookup

0.9

= wait: always update

= bypass: update only if there
IS no contention
(std::try_to_lock)

" The problem is not multi-tier
specific

= DRAM-only & PMEM-only:
find P99 latency improved by

0.6

0.3

GET Throughput (normalized to DRAM single tier)

0.0

DRAM MUlti PMEM DRAM Multi PMEM more than 2 times with
Tier Tier
50% PMEM S0% DRAM tryLockUpdate: true

[wait] bypass

" . . r-
Performance varies by use, configuration and other factors. Learn more at www.Intel.com/Performancelndex . < PEE'STgﬂgﬂ?%Y2022
12 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved. % COMPUTATIONAL STORAGE

http://www.intel.com/PerformanceIndex

Evictions: single-tier vs multi-tier

Evictions cost more in multi-tier environment.

Critical section under LRU lock:

"4 %

Eviction in the Single-Tier: Eviction in the Multi-Tier:
= Find the victim and recycle it = Find the victim in the current tier
immediately. = Allocate new ltem in the destination

tier. Might cause recursive eviction.

= Copy data from the source tier to
the destination one.

= Recycle Item from the source tier.

F.4 PERSISTENT MEMORY
= + SUMMIT 2022

13 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved. v COMPUTATIONAL STORAGE

Decrease Eviction Overhead - Possible Solutions

Background eviction thread
Insert to the first free tier
= |deally, used together with background thread

Decrease critical section length
= Remove the item from eviction queue drop the lock and evict
= Evicting an object should be lock-free!

Work in progress
= Scalable eviction policy (LRU, LFU, etc.) implementation

F.4 PERSISTENT MEMORY
= + SUMMIT 2022

14 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved. v COMPUTATIONAL STORAGE

Insert to first free allocation slot & background eviction

1.00 -

GET Throughput (normalized to DRAM single tier)

0.00 -

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/Performancelndex .

follower

leader

e
o
o

0.50 -

0.25 -

higher is better

Multi
Tier
50% DRAM
50% PMEM
bg-off

Multi PMEM Multi
Tier bg-off Tier
50% DRAM 50% DRAM
50% PMEM 50% PMEM
bg-on bg-off

[first-free] default

Multi
Tier
50% DRAM
50% PMEM
bg-on

15| ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

PMEM
bg-off

First free for tiered instances: use first
available allocation slot (not necessarily
tier 0)

Desired cache behavior may be
to promote hot items from tier 1 to tier O

= |nitial results show only about 20%
success rate

" Hot items are accessed often leaving
a small chance that we acquire the
locks needed to promote

Background eviction: pre-emptively
move cold items to the next memory tier

= Done in batch

= Can have negative effect since we
add even more contention to the LRU
locks under high throughput

ERSISTENT MEMORY

r, P
S+ SUMMIT 2022
wv» COMPUTATIONAL STORAGE

http://www.intel.com/PerformanceIndex

Decreasing Critical Section Length

follower leader follower leader
1.00+ . . .
_ higher is better I pso [po0 [poo 151 lower is better
L]
@ . . —_ _
g g
» (.75 .
2 3
o
o c 10
e ' 2
§ y 1 R 5.0
= 0501 E
- E
E 5
= =
— >
= %]
o < 54
= =
20.25 : 5259
2 [
[S ! - I
. o
[
(V]
0.00 0.0 0
Mutti Multi PMEM Multi Multi PMEM DRAM _ DRAM Multi PMEM PMEM DRAM _ DRAM Mult PMEM PMEM
. ner | ier bg-off Ter , ner bg-off bg-off bg-off Tier bg-off bg-off bg-off bg-off Tier bg-off bg-off
50% DRAM 50% DRAM 50% DRAM 50% DRAM orig reduced-cs 50% DRAM orig reduced-cs orig reduced-cs 50% DRAM orig reduced-cs
50% PMEM 50% PMEM 50% PMEM 50% PMEM 50% PMEM 50% PMEM
bg-off bg=on bg=off bg=-on bg-on bg-on
reduced-cs reduced-cs

[original] Reduced-CS

= LRU lock for tier O is dropped once we have eviction candidate

= Multi-tier has higher throughput in both workloads & reduced latency over PMEM in
follower workload

-
Performance varies by use, configuration and other factors. Learn more at www.Intel.com/Performancelndex . "< PERSISTENT MEMORY

Z + SUMMIT 2022
16 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved. v COMPUTATIONAL STORAGE

http://www.intel.com/PerformanceIndex

Future Directions - Scaling Eviction Policy

= Container-less policies

 Random sampling of objects in a class does not require maintaining LRU
structure — similar to Redis and Hyperbolic Caching (ATC'17)

* Need to add recency/frequency information per item

= Partitioned LRU lists — current memcached LRU

= Cachelib 2Q implementation uses the same MultiList structure for
{Hot,Warm,Cold} regions and requires locking entire structure for an operation

= Use separate LRU lists for Hot, Warm, Cold to reduce contention

F.4 PERSISTENT MEMORY
= + SUMMIT 2022

17 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved. v COMPUTATIONAL STORAGE

L
Conclusion

« Memory tiering with CXL/PMEM increases memory capacity for a
lower cost compared to DRAM

= Especially applicable to caching applications where more memory
translates to higher hit ratio

= Software support needs to consider techniques to mitigate data
movement overhead on the critical path
» Choose fastest allocation path (first free method)
= Background data migration
» Reduced critical sections

= We believe we can get multi-tier DRAM+PMEM to performance parity
with single tier DRAM instance

F.4 PERSISTENT MEMORY
= + SUMMIT 2022

18 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved. v COMPUTATIONAL STORAGE

.,
Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more
at www.Intel.com/Performancelndex

Performance results are based on testing as of dates shown in configurations and
may not reflect all publicly available updates. See backup for configuration
details. No product or component can be absolutely secure.

No product or component can be absolutely secure.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of
Intel Corporation or its subsidiaries. Other names and brands may be claimed as

the property of others.

F.4 PERSISTENT MEMORY
= + SUMMIT 2022

19 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved. v COMPUTATIONAL STORAGE

http://www.intel.com/PerformanceIndex

PERSISTENT MEMORY

>+ SUMMIT 2022

COMPUTATIONAL STORAGE

VIRTUAL EVENT « MAY 24-25, 2022

Please take a moment to rate this session.

Your feedback is important to us.

20 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

	Enabling Memory Tiering in CacheLib
	Outline
	Why Memory Tiering?
	Introduction to CacheLib
	Introduction to CacheLib – Memory Organization
	Heterogenous Memory Support
	Memory Tiers Configuration
	Multi-tier Memory Organization
	Benchmarks and system configuration
	Initial Benchmarking Results for Lookaside Cache Workloads
	VTune Performance Analysis
	Testing the impact of always locking LRU queue
	Evictions: single-tier vs multi-tier
	Decrease Eviction Overhead - Possible Solutions
	Insert to first free allocation slot & background eviction
	Decreasing Critical Section Length
	Future Directions - Scaling Eviction Policy
	Conclusion
	Notices & Disclaimers
	Please take a moment to rate this session.

