
1 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Enabling Memory
Tiering in CacheLib
Daniel Byrne, Sergei Vinogradov, Igor
Chorazewicz, and Tomasz Paszkowski

Intel Corporation

2 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Outline

▪ Why do we need memory tiering?
▪ Introduction to CacheLib
▪ Support for heterogenous memory in CacheLib
▪ Performance analysis
▪ Potential solutions to measured overhead
▪ Future directions
▪ Conclusion

3 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Why Memory Tiering?

▪ New memory technologies such as
Compute Express Link (CXL) offer a
wide range of use cases
▪ Memory expansion in a single server
▪ Dynamic memory pooling across nodes

▪ CXL can reduce cost of infrastructure
▪ Increased memory utilization (dynamic

memory pooling)
▪ Reduced variants of server configurations

▪ Persistent memory offers more
memory capacity at lower cost

Graph Cache Leader Workload

Reduced
TCO w/
CXL/PMEM

Same TCO
(more
memory)

Higher TCO

default hit ratio
for this workload

4 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Introduction to CacheLib

• CacheLib was developed by Meta and released as OSS in 2021
• CacheLib is a caching library – can run in-process or as a part of a network stack

for remote access

auto item_handle = cache->find("key1");
if (item_handle) {
auto data = reinterpret_cast<const char*>(item_handle->getMemory());
std::cout << data << '\n’;

}

// getMemory can block if handle is not ready
auto handle = cache.find("foobar");
handle.onReady(processItem);

5 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Introduction to CacheLib – Memory Organization

▪ Memory is divided into independent
pools

▪ Each pool contains independent
allocation classes

▪ Items are organized logically into
allocation classes by their respective
size in bytes

▪ Allocation classes follow a geometric
sequence (96, 144, 216, 328 …)

▪ On eviction the LRU item for that class
is removed

MemoryPool
(PoolID_A0)

SlabAllocator

Slab (4MB)

Slab (4MB)

Slab (4MB)

Slab (4MB)

Slab (4MB)

AllocationClass
(SIZE_A)

AllocationClass
(SIZE_B)

MemoryPool
(PoolID_B0)

AllocationClass
(SIZE_C)

AllocationClass
(SIZE_D)

LRU LIST LRU LIST

LRU LIST LRU LIST

6 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Heterogenous Memory Support

▪ What changed:
▪ Config API was extended to allow configure memory tiers
▪ No user-visible changes to the CacheLib applications
▪ Re-use existing eviction mechanisms
▪ Promotion among tiers is WIP

DRAM Flash
Eviction

Today: User-space memory tiering

Promotion

Memory
tier 0

Memory
tier 1

Eviction

Promotion
Flash

Eviction

Promotion

https://github.com/pmem/CacheLib

https://github.com/pmem/CacheLib

7 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Memory Tiers Configuration
#include “cachelib/allocator/CacheAllocator.h”
std::unique_ptr<Cache> cache;
facebook::cachelib::PoolId default_pool;

void initializeCache() {
Cache::Config config;
config

.setCacheSize(12 * 1024 * 1024 * 1024); // 12 GB – total size

.setCacheName("My cache");
// configure DRAM to have 4GB and PMEM to have 8GB
.configureMemoryTiers({

MemoryTierCacheConfig::fromFile("/dev/shm/file1").setRatio(1),
MemoryTierCacheConfig::fromFile("/mnt/pmem1/file1").setRatio(2)) })

.validate();
cache = std::make_unique<Cache>(config);
default_pool = cache->addPool(

"default", cache->getCacheMemoryStats().cacheSize);
}

8 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Multi-tier Memory Organization

MemoryPool
(PoolID_A)

SlabAllocator

Slab (4MB)

Slab (4MB)

Slab (4MB)

Slab (4MB)

Slab (4MB)

AllocationClass
(SIZE_A)

AllocationClass
(SIZE_B)

MemoryPool
(PoolID_B)

AllocationClass
(SIZE_C)

AllocationClass
(SIZE_D)

LRU LIST LRU LIST

LRU LIST LRU LIST

MemoryPool
(PoolID_A)

SlabAllocator

Slab (4MB)

Slab (4MB)

Slab (4MB)

Slab (4MB)

Slab (4MB)

AllocationClass
(SIZE_A)

AllocationClass
(SIZE_B)

MemoryPool
(PoolID_B)

AllocationClass
(SIZE_C)

AllocationClass
(SIZE_D)

LRU LIST LRU LIST

LRU LIST LRU LIST

PMEMDRAM

• Memory pool and allocation classes are mirrored on each layer
• New elements are always inserted in topmost tier (if possible)
• Individual objects can be moved between tiers (evicted) on insert() or find() function

• Requires locking LRU list in source and target tiers

eviction

9 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Benchmarks and system configuration

▪ 2x 3rd Gen Intel® Xeon ® processor
(28core @ 2.60GHz)
▪ 256 GB (16 slots/16GB/3200) total

DDR4 memory
▪ 2 TB (8x256GB) NMB1XBD256GQS

Intel® Optane™ PMEM (Barlow Pass)
▪ CentOS Linux release 8.5.2111,

kernel v5.17.5
▪ CacheLib compiled with gcc v8.5
▪ Microcode 0xd000332 with

HyperThreading and Turbo
▪ Tested by Intel on 05/03/2022

▪ Benchmarks used from Cachebench:
▪ Follower

▪ https://github.com/byrnedj/CacheLib/blob/bg_a
nd_tt_for_snia/cachelib/cachebench/test_confi
gs/hit_ratio/graph_cache_follower_fbobj/config.
json

▪ Leader:
▪ https://github.com/byrnedj/CacheLib/blob/bg_a

nd_tt_for_snia/cachelib/cachebench/test_confi
gs/hit_ratio/graph_cache_leader_fbobj/config.js
on

▪ With memory tiers:
▪ usePosixShm: true
▪ //tier 1

[{ ratio: 1, file:”/dev/shm/tier1” },
//tier 2 (if enabled)
{ ratio: 1, file:”/mnt/pmem0/tier2” }]

https://github.com/byrnedj/CacheLib/blob/bg_and_tt_for_snia/cachelib/cachebench/test_configs/hit_ratio/graph_cache_follower_fbobj/config.json
https://github.com/byrnedj/CacheLib/blob/bg_and_tt_for_snia/cachelib/cachebench/test_configs/hit_ratio/graph_cache_leader_fbobj/config.json

10 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Initial Benchmarking Results for Lookaside Cache Workloads

▪ Graph Cache Leader - 0.42 hit ratio, 71.6M keys, 240M requests
▪ Graph Cache Follower – 0.91 hit ratio, 37.2M keys, 240M requests
▪ 8GB total cache size (4GB DRAM + 4GB PMEM for multi-tier)
▪ 24 requesting threads

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex​ ​.

higher is better lower is better

http://www.intel.com/PerformanceIndex

11 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

VTune Performance Analysis

▪ Hotspot analysis report summary from VTune

LRU lock contention!

12 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Testing the impact of always locking LRU queue
▪ tryLockUpdate – controls

whether update LRU list on
lookup
▪ wait: always update

▪ bypass: update only if there
is no contention
(std::try_to_lock)

▪ The problem is not multi-tier
specific
▪ DRAM-only & PMEM-only:

find P99 latency improved by
more than 2 times with
tryLockUpdate: true

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex​ ​.

higher is better

http://www.intel.com/PerformanceIndex

13 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Evictions: single-tier vs multi-tier

Eviction in the Single-Tier:
▪ Find the victim and recycle it

immediately.

Eviction in the Multi-Tier:
▪ Find the victim in the current tier
▪ Allocate new Item in the destination

tier. Might cause recursive eviction.
▪ Copy data from the source tier to

the destination one.
▪ Recycle Item from the source tier.

Evictions cost more in multi-tier environment.
Critical section under LRU lock:

14 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Decrease Eviction Overhead - Possible Solutions

▪ Background eviction thread
▪ Insert to the first free tier

▪ Ideally, used together with background thread
▪ Decrease critical section length

▪ Remove the item from eviction queue drop the lock and evict
▪ Evicting an object should be lock-free!

▪ Work in progress
▪ Scalable eviction policy (LRU, LFU, etc.) implementation

15 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Insert to first free allocation slot & background eviction

▪ First free for tiered instances: use first
available allocation slot (not necessarily
tier 0)

▪ Problem: Desired cache behavior may be
to promote hot items from tier 1 to tier 0
▪ Initial results show only about 20%

success rate
▪ Hot items are accessed often leaving

a small chance that we acquire the
locks needed to promote

▪ Background eviction: pre-emptively
move cold items to the next memory tier
▪ Done in batch
▪ Can have negative effect since we

add even more contention to the LRU
locks under high throughput

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex​ ​.

higher is better

http://www.intel.com/PerformanceIndex

16 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Decreasing Critical Section Length

▪ LRU lock for tier 0 is dropped once we have eviction candidate
▪ Multi-tier has higher throughput in both workloads & reduced latency over PMEM in

follower workload
Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex​ ​.

higher is better lower is better

http://www.intel.com/PerformanceIndex

17 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Future Directions - Scaling Eviction Policy

▪ Container-less policies
▪ Random sampling of objects in a class does not require maintaining LRU

structure – similar to Redis and Hyperbolic Caching (ATC’17)
▪ Need to add recency/frequency information per item

▪ Partitioned LRU lists – current memcached LRU
▪ Cachelib 2Q implementation uses the same MultiList structure for

{Hot,Warm,Cold} regions and requires locking entire structure for an operation
▪ Use separate LRU lists for Hot, Warm, Cold to reduce contention

18 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Conclusion

▪ Memory tiering with CXL/PMEM increases memory capacity for a
lower cost compared to DRAM

▪ Especially applicable to caching applications where more memory
translates to higher hit ratio

▪ Software support needs to consider techniques to mitigate data
movement overhead on the critical path
▪ Choose fastest allocation path (first free method)
▪ Background data migration
▪ Reduced critical sections

▪ We believe we can get multi-tier DRAM+PMEM to performance parity
with single tier DRAM instance

19 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Notices & Disclaimers
Performance varies by use, configuration and other factors. Learn more
at www.Intel.com/PerformanceIndex

Performance results are based on testing as of dates shown in configurations and
may not reflect all publicly available ​updates. See backup for configuration
details. No product or component can be absolutely secure.

No product or component can be absolutely secure.​​​​

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of
Intel Corporation or its subsidiaries. Other names and brands may be claimed as
the property of others​.

http://www.intel.com/PerformanceIndex

20 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Please take a moment to rate this session.
Your feedback is important to us.

	Enabling Memory Tiering in CacheLib
	Outline
	Why Memory Tiering?
	Introduction to CacheLib
	Introduction to CacheLib – Memory Organization
	Heterogenous Memory Support
	Memory Tiers Configuration
	Multi-tier Memory Organization
	Benchmarks and system configuration
	Initial Benchmarking Results for Lookaside Cache Workloads
	VTune Performance Analysis
	Testing the impact of always locking LRU queue
	Evictions: single-tier vs multi-tier
	Decrease Eviction Overhead - Possible Solutions
	Insert to first free allocation slot & background eviction
	Decreasing Critical Section Length
	Future Directions - Scaling Eviction Policy
	Conclusion
	Notices & Disclaimers
	Please take a moment to rate this session.

