
1 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Enabling Memory
Tiering in CacheLib
Daniel Byrne, Sergei Vinogradov, Igor
Chorazewicz, and Tomasz Paszkowski

Intel Corporation

2 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Outline

▪ Why do we need memory tiering?
▪ Introduction to CacheLib
▪ Support for heterogenous memory in CacheLib
▪ Performance analysis
▪ Potential solutions to measured overhead
▪ Future directions
▪ Conclusion

3 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Why Memory Tiering?

▪ New memory technologies such as
Compute Express Link (CXL) offer a
wide range of use cases
▪ Memory expansion in a single server
▪ Dynamic memory pooling across nodes

▪ CXL can reduce cost of infrastructure
▪ Increased memory utilization (dynamic

memory pooling)
▪ Reduced variants of server configurations

▪ Persistent memory offers more
memory capacity at lower cost

Graph Cache Leader Workload

Reduced
TCO w/
CXL/PMEM

Same TCO
(more
memory)

Higher TCO

default hit ratio
for this workload

4 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Introduction to CacheLib

• CacheLib was developed by Meta and released as OSS in 2021
• CacheLib is a caching library – can run in-process or as a part of a network stack

for remote access

auto item_handle = cache->find("key1");
if (item_handle) {
auto data = reinterpret_cast<const char*>(item_handle->getMemory());
std::cout << data << '\n’;

}

// getMemory can block if handle is not ready
auto handle = cache.find("foobar");
handle.onReady(processItem);

5 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Introduction to CacheLib – Memory Organization

▪ Memory is divided into independent
pools

▪ Each pool contains independent
allocation classes

▪ Items are organized logically into
allocation classes by their respective
size in bytes

▪ Allocation classes follow a geometric
sequence (96, 144, 216, 328 …)

▪ On eviction the LRU item for that class
is removed

MemoryPool
(PoolID_A0)

SlabAllocator

Slab (4MB)

Slab (4MB)

Slab (4MB)

Slab (4MB)

Slab (4MB)

AllocationClass
(SIZE_A)

AllocationClass
(SIZE_B)

MemoryPool
(PoolID_B0)

AllocationClass
(SIZE_C)

AllocationClass
(SIZE_D)

LRU LIST LRU LIST

LRU LIST LRU LIST

6 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Heterogenous Memory Support

▪ What changed:
▪ Config API was extended to allow configure memory tiers
▪ No user-visible changes to the CacheLib applications
▪ Re-use existing eviction mechanisms
▪ Promotion among tiers is WIP

DRAM Flash
Eviction

Today: User-space memory tiering

Promotion

Memory
tier 0

Memory
tier 1

Eviction

Promotion
Flash

Eviction

Promotion

https://github.com/pmem/CacheLib

https://github.com/pmem/CacheLib

7 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Memory Tiers Configuration
#include “cachelib/allocator/CacheAllocator.h”
std::unique_ptr<Cache> cache;
facebook::cachelib::PoolId default_pool;

void initializeCache() {
Cache::Config config;
config

.setCacheSize(12 * 1024 * 1024 * 1024); // 12 GB – total size

.setCacheName("My cache");
// configure DRAM to have 4GB and PMEM to have 8GB
.configureMemoryTiers({

MemoryTierCacheConfig::fromFile("/dev/shm/file1").setRatio(1),
MemoryTierCacheConfig::fromFile("/mnt/pmem1/file1").setRatio(2)) })

.validate();
cache = std::make_unique<Cache>(config);
default_pool = cache->addPool(

"default", cache->getCacheMemoryStats().cacheSize);
}

8 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Multi-tier Memory Organization

MemoryPool
(PoolID_A)

SlabAllocator

Slab (4MB)

Slab (4MB)

Slab (4MB)

Slab (4MB)

Slab (4MB)

AllocationClass
(SIZE_A)

AllocationClass
(SIZE_B)

MemoryPool
(PoolID_B)

AllocationClass
(SIZE_C)

AllocationClass
(SIZE_D)

LRU LIST LRU LIST

LRU LIST LRU LIST

MemoryPool
(PoolID_A)

SlabAllocator

Slab (4MB)

Slab (4MB)

Slab (4MB)

Slab (4MB)

Slab (4MB)

AllocationClass
(SIZE_A)

AllocationClass
(SIZE_B)

MemoryPool
(PoolID_B)

AllocationClass
(SIZE_C)

AllocationClass
(SIZE_D)

LRU LIST LRU LIST

LRU LIST LRU LIST

PMEMDRAM

• Memory pool and allocation classes are mirrored on each layer
• New elements are always inserted in topmost tier (if possible)
• Individual objects can be moved between tiers (evicted) on insert() or find() function

• Requires locking LRU list in source and target tiers

eviction

9 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Benchmarks and system configuration

▪ 2x 3rd Gen Intel® Xeon ® processor
(28core @ 2.60GHz)
▪ 256 GB (16 slots/16GB/3200) total

DDR4 memory
▪ 2 TB (8x256GB) NMB1XBD256GQS

Intel® Optane™ PMEM (Barlow Pass)
▪ CentOS Linux release 8.5.2111,

kernel v5.17.5
▪ CacheLib compiled with gcc v8.5
▪ Microcode 0xd000332 with

HyperThreading and Turbo
▪ Tested by Intel on 05/03/2022

▪ Benchmarks used from Cachebench:
▪ Follower

▪ https://github.com/byrnedj/CacheLib/blob/bg_a
nd_tt_for_snia/cachelib/cachebench/test_confi
gs/hit_ratio/graph_cache_follower_fbobj/config.
json

▪ Leader:
▪ https://github.com/byrnedj/CacheLib/blob/bg_a

nd_tt_for_snia/cachelib/cachebench/test_confi
gs/hit_ratio/graph_cache_leader_fbobj/config.js
on

▪ With memory tiers:
▪ usePosixShm: true
▪ //tier 1

[{ ratio: 1, file:”/dev/shm/tier1” },
//tier 2 (if enabled)
{ ratio: 1, file:”/mnt/pmem0/tier2” }]

https://github.com/byrnedj/CacheLib/blob/bg_and_tt_for_snia/cachelib/cachebench/test_configs/hit_ratio/graph_cache_follower_fbobj/config.json
https://github.com/byrnedj/CacheLib/blob/bg_and_tt_for_snia/cachelib/cachebench/test_configs/hit_ratio/graph_cache_leader_fbobj/config.json

10 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Initial Benchmarking Results for Lookaside Cache Workloads

▪ Graph Cache Leader - 0.42 hit ratio, 71.6M keys, 240M requests
▪ Graph Cache Follower – 0.91 hit ratio, 37.2M keys, 240M requests
▪ 8GB total cache size (4GB DRAM + 4GB PMEM for multi-tier)
▪ 24 requesting threads

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex .

higher is better lower is better

http://www.intel.com/PerformanceIndex

11 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

VTune Performance Analysis

▪ Hotspot analysis report summary from VTune

LRU lock contention!

12 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Testing the impact of always locking LRU queue
▪ tryLockUpdate – controls

whether update LRU list on
lookup
▪ wait: always update

▪ bypass: update only if there
is no contention
(std::try_to_lock)

▪ The problem is not multi-tier
specific
▪ DRAM-only & PMEM-only:

find P99 latency improved by
more than 2 times with
tryLockUpdate: true

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex .

higher is better

http://www.intel.com/PerformanceIndex

13 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Evictions: single-tier vs multi-tier

Eviction in the Single-Tier:
▪ Find the victim and recycle it

immediately.

Eviction in the Multi-Tier:
▪ Find the victim in the current tier
▪ Allocate new Item in the destination

tier. Might cause recursive eviction.
▪ Copy data from the source tier to

the destination one.
▪ Recycle Item from the source tier.

Evictions cost more in multi-tier environment.
Critical section under LRU lock:

14 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Decrease Eviction Overhead - Possible Solutions

▪ Background eviction thread
▪ Insert to the first free tier

▪ Ideally, used together with background thread
▪ Decrease critical section length

▪ Remove the item from eviction queue drop the lock and evict
▪ Evicting an object should be lock-free!

▪ Work in progress
▪ Scalable eviction policy (LRU, LFU, etc.) implementation

15 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Insert to first free allocation slot & background eviction

▪ First free for tiered instances: use first
available allocation slot (not necessarily
tier 0)

▪ Problem: Desired cache behavior may be
to promote hot items from tier 1 to tier 0
▪ Initial results show only about 20%

success rate
▪ Hot items are accessed often leaving

a small chance that we acquire the
locks needed to promote

▪ Background eviction: pre-emptively
move cold items to the next memory tier
▪ Done in batch
▪ Can have negative effect since we

add even more contention to the LRU
locks under high throughput

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex .

higher is better

http://www.intel.com/PerformanceIndex

16 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Decreasing Critical Section Length

▪ LRU lock for tier 0 is dropped once we have eviction candidate
▪ Multi-tier has higher throughput in both workloads & reduced latency over PMEM in

follower workload
Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex .

higher is better lower is better

http://www.intel.com/PerformanceIndex

17 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Future Directions - Scaling Eviction Policy

▪ Container-less policies
▪ Random sampling of objects in a class does not require maintaining LRU

structure – similar to Redis and Hyperbolic Caching (ATC’17)
▪ Need to add recency/frequency information per item

▪ Partitioned LRU lists – current memcached LRU
▪ Cachelib 2Q implementation uses the same MultiList structure for

{Hot,Warm,Cold} regions and requires locking entire structure for an operation
▪ Use separate LRU lists for Hot, Warm, Cold to reduce contention

18 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Conclusion

▪ Memory tiering with CXL/PMEM increases memory capacity for a
lower cost compared to DRAM

▪ Especially applicable to caching applications where more memory
translates to higher hit ratio

▪ Software support needs to consider techniques to mitigate data
movement overhead on the critical path
▪ Choose fastest allocation path (first free method)
▪ Background data migration
▪ Reduced critical sections

▪ We believe we can get multi-tier DRAM+PMEM to performance parity
with single tier DRAM instance

19 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Notices & Disclaimers
Performance varies by use, configuration and other factors. Learn more
at www.Intel.com/PerformanceIndex

Performance results are based on testing as of dates shown in configurations and
may not reflect all publicly available updates. See backup for configuration
details. No product or component can be absolutely secure.

No product or component can be absolutely secure.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of
Intel Corporation or its subsidiaries. Other names and brands may be claimed as
the property of others.

http://www.intel.com/PerformanceIndex

20 | ©2022 Storage Networking Industry Association ©. Intel Corporation. All Rights Reserved.

Please take a moment to rate this session.
Your feedback is important to us.

	Enabling Memory Tiering in CacheLib
	Outline
	Why Memory Tiering?
	Introduction to CacheLib
	Introduction to CacheLib – Memory Organization
	Heterogenous Memory Support
	Memory Tiers Configuration
	Multi-tier Memory Organization
	Benchmarks and system configuration
	Initial Benchmarking Results for Lookaside Cache Workloads
	VTune Performance Analysis
	Testing the impact of always locking LRU queue
	Evictions: single-tier vs multi-tier
	Decrease Eviction Overhead - Possible Solutions
	Insert to first free allocation slot & background eviction
	Decreasing Critical Section Length
	Future Directions - Scaling Eviction Policy
	Conclusion
	Notices & Disclaimers
	Please take a moment to rate this session.

