
1 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Organic Redesign of Abstractions for Computational
Storage Devices using CISCOps

Jian Zhang, Yujie Ren, Sudarsun Kannan
Rutgers University

2 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Storage Hardware and Software Trends

2

• Lack of organic support for leveraging in-storage compute for
I/O and data processing operations and reducing I/O overheads

• Hardware trend: fast microseconds latency devices with
increasing in-storage compute capabilities

• Software trend: fast user-level file systems to bypass the OS for
reducing software overheads (“boundary crossing”)

• Unfortunately, dominating I/O overheads like data copy, system
calls, PCI communication costs remain

3 | ©2022 Storage Networking Industry Association. All Rights Reserved. 3

Evolving Storage with Fast Compute

CPU: 2-core 3-core 5-core > 8 cores *

RAM: 128MB DDR2 512MB LPDDR2 1GB LPDDR4 > 2GB LPDDR4 *

Year: 2008 2013 2018 2022

Latency: ~70𝜇𝜇s ~60𝜇𝜇s ~40𝜇𝜇s ~20𝜇𝜇s

B/W: 250 MB/s 500 MB/s 3300 MB/s 6600 MB/s

Interface: SATA 3.0 SATA 3.0 PCIe 4.0 PCIe 5.0

Samsung 840 Samsung 970Intel X25M Samsung PM1743

* Speculated specs In-storage compute is becoming powerful!

4 | ©2022 Storage Networking Industry Association. All Rights Reserved. 4

State-of-the-art Designs

: data-plane ops : control-plane ops

DeviceFS

Application

FS Lib

Storage

Firmware FS

DevFS (FAST’ 18)
Insider (ATC ‘19)
CrossFS (OSDI ’20)

Kernel

Application

Compute
Offloading

PolarDB (FAST ‘20)
Newport CSD
ScaleFlux CSD

Data processing

FS
Kernel

Storage

UserFS

Application

FS Lib

Storage

Strata (SOSP ’17)
SplitFS (SOSP ’19)
FSP (SOSP ‘21)

Kernel
FS Server

Application

Storage

KernelFS

ext4-DAX
F2FS (FAST ’15)
NOVA (FAST ’16)

FS
Kernel

5 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Common I/O Sequences in Applications

5

• Simple I/O operations to store or read state (e.g., write, read)

• Sequence of I/O operations (e.g., open-read-write-close in file servers)

• Operations coupled with data processing (e.g., append-checksum-write in
key-value stores)

• Reducing I/O overheads, such as data copy, PCIe costs, and syscalls,
across all I/O sequences is critical.

6 | ©2022 Storage Networking Industry Association. All Rights Reserved.

• Background
• Motivation
• Design
• Evaluation
• Conclusion

6

Outline

7 | ©2022 Storage Networking Industry Association. All Rights Reserved. 7

Dominant I/O Overheads

Read-Modify-Write

read write data copy

Application

Storage

KernelFS

FS
Kernel

- 2 syscalls
- 2 PCIe costs
- 4 data copies

Append-Checksum-Write

- 2 syscalls
- 2 PCIe costs
- 4 data copies

Modify

- Processing in Host

Application

Storage

KernelFS

FS
Kernel

Checksum

8 | ©2022 Storage Networking Industry Association. All Rights Reserved. 8

Dominant I/O Overheads
Read-Modify-Write read write data copy

Application

Storage

KernelFS

FS
Kernel

2 syscalls
2 PCIe costs
4 data copies

UserFS

Application

FS Lib

Storage

Kernel
FS Server

2 PCIe cost
2 data copies

DeviceFS

Application

FS Lib

Storage

Firmware FS

Kernel

2 PCIe cost
2 data copies

Application

Compute
Offloading

Data processing

Storage

FS
Kernel

2 syscalls
2 PCIe cost
2 data copies

9 | ©2022 Storage Networking Industry Association. All Rights Reserved. 9

Dominant I/O Overheads
Append-Checksum-Write write data copyChecksum

CRC

Application

Storage

KernelFS

FS
Kernel

2 syscalls
2 PCIe costs
4 data copies
Processing in Host

UserFS

Application

FS Lib

Storage

Kernel
FS Server

2 PCIe costs
2 data copies
Processing in Host

CRC

DeviceFS

Application

FS Lib

Storage

Firmware FS

Kernel

CRC

2 PCIe costs
2 data copies
Processing in Host

Application

Compute
Offloading

Data processing

Storage

FS
Kernel

CRC

2 syscalls, 2 PCIe costs
2 data copies
Processing in Storage

10 | ©2022 Storage Networking Industry Association. All Rights Reserved. 10

Storage Approaches Summary

Properties KernelFS UserFS DeviceFS Compute
offload FusionFS

Direct-access

Reduce data copy

Reduce PCIe cost

In-storage management

In-storage processing

Durability Data Data Data Data Data &
Compute

Resource management

Security

Satisfy Not satisfyPartially satisfy

11 | ©2022 Storage Networking Industry Association. All Rights Reserved.

• Background
• Motivation
• Design
• Evaluation
• Conclusion

11

Outline

12 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Our Solution: FusionFS

12

• Exploits storage compute for fine-grained crash consistency and
faster recovery

• Manages and provides fairness of in-storage resources through CFS

• To reduce I/O overheads, FusionFS offloads CISCOps to storage

• FusionFS aggregates I/O and data processing sequences into CISCOps
(Inspiration: CISC ISAs)

13 | ©2022 Storage Networking Industry Association. All Rights Reserved.

RISC vs CISC

13

• Two widely used ISAs: RISC and CISC

• Reduced instruction set computer (RISC)
- More instructions
- Each instruction takes one cycle time
- More complex compiler

• Complex instruction set computer (CISC)
- Fewer and richer instructions composed of simple instructions
- Each instruction takes a longer amount of cycle time
- More complex hardware logic

14 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Everlasting Debate

14

15 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Explore RISC and richer CISC-styled I/O and data
processing operations to reduce dominant

overheads

15

Our Goal

16 | ©2022 Storage Networking Industry Association. All Rights Reserved.

FusionFS: RISC vs CISC operations

16

• CISC operations (CISCOps) are aggregated I/O and data processing
operations (e.g., append-checksum-write, open-read-write-close)

• We offload RISC and CISC operations to an in-storage file system (we
also study CISCOps for traditional kernel file systems)

• RISC operations are simple POSIX I/O (e.g., read, write, close)

• CISCOps can significantly reduce dominant I/O overheads

• Unlike POSIX I/O vectors, CISCOps combines identical and non-
identical I/O and processing operations

17 | ©2022 Storage Networking Industry Association. All Rights Reserved. 17

KernelFS Path:

2 syscalls + 4 data copies
2 metadata copies + 2 PCIe costs

User space

Kernel space

User space

Storage

Only 1 data copy and 1 PCIe access with
direct access and offload computing

Append(data) Write(crc) append_CRC_write (data)

CISCops Path:

checksum

FusionFS: CISC Operations

CISCops reduces data copy, syscalls,
and PCIe overheads!

Storage

Append-Checksum-Write : Kernel Trap

: Data Copy

: Metadata Copy

: PCIe Cost

18 | ©2022 Storage Networking Industry Association. All Rights Reserved. 18

WriteRawBlock(data) {
status = file->Append(data)
crc = crc32c::Value(data, size);
crc = crc32c::Extend(crc, trailer, 1);
EncodeFixed32(…crc32c::Mask(crc))
status = file->Append(Slice(trailer, size)

} LevelDB CRC with OS FS

WriteRawBlock(data) {
status = file->Append-CRC-Write(data)

}

With CISCops

FusionFS: CISCops Command
• Append-CRC-Write sequence in vanilla LevelDB code and proposed

CISCops

19 | ©2022 Storage Networking Industry Association. All Rights Reserved. 19

 Support POSIX semantics
 Add I/O commands to I/O queue
 Convert POSIX I/O ops to CISC

I/O ops

Application

Kernel
Component

UserLib

FusionFS Components

 Handle FS mount and setup
 Help with security

: data-plane ops : control-plane ops

I/O queues

Host CPUs

 Handle I/O and Data processing
request

 Manage Data and metadata
 Support Fine-grained Journaling
 Provide CFS IO Scheduling

Device CPUs

StorageFS

IO Queue
Scheduler

Fine-grained
Journaling

20 | ©2022 Storage Networking Industry Association. All Rights Reserved. 20

FusionFS I/O Processing Example

UserLib

StorageFS

Convert POSIX I/O ops to CISC
IO ops

Insert I/O commands to inode-
queue

StorageFS fetches CICS IO
commands from inode-queues

IO scheduler provides fairness
across multiple tenants

File1 File2

Insert
command

Process
command

Thread1
Op1* append_checksum_write(fd1, buf, size=4k);
Op2 read(fd1, buf, sz = 4096, off = 0);

Thread2
Op3+ read_modify_write(fd2, buf, size=4k);
Op4 close(fd2);

Op1* Op2 Op3+ Op4

Kernel
Component

Compute Engine

IO Queue
Scheduler

Fine-grained
Journaling

Credential
Table

Journaling mechanism supports
fine-grained crash consistency

21 | ©2022 Storage Networking Industry Association. All Rights Reserved. 21

FusionFS I/O Permissions
• The StorageFS maintains a credential table that maps a unique

process ID to its credentials

• OS generates random (128-bit) unique ID for each process and
updates the firmware credential table

• StorageFS checks if a request’s unique ID matches credential table

22 | ©2022 Storage Networking Industry Association. All Rights Reserved. 22

Challenges Introduced by CISCops

• How to provide fairness and efficient across tenants?
- Tenants using CISCOps can consume high device compute resources

- Device memory resources could also be high!
- Impacts tenants doing simple I/O

- Solution: CFS I/O Scheduler

• How to provide crash consistency for CISCOps?
- Recovery the internal computational state after crash
- Solution: MicroTx with Auto Recovery

• How to transparently generating, and offloading CISCOps?
- Solution: Partial Support for Automatic Offloading (AutoMerge)

23 | ©2022 Storage Networking Industry Association. All Rights Reserved.

In-storage Resource Scheduling

23

• Round Robin uses global Linked list to store inode-queues

Append-CRC-Write Read-CRC-Write

Read Write

File1

File2

StorageFS

Device
CPU

Read

Inode-queue1 Inode-queue2

Linked list

- Use Round Robin Scheduler
- Assume only 1 device-CPU
- Assume CISCOps spend 5x CPU cycles than
simple POSIX operations

CPU Cycles on File1: 0

CPU Cycles on File2: 0

- FusionFS maintains a global linked list
for all inode-queues

- Initially, CPU cycles spent on each file
is 0

24 | ©2022 Storage Networking Industry Association. All Rights Reserved.

In-storage Resource Scheduling

24

Read-CRC-Write

Read

Write

File1

File2

StorageFS

Device
CPU

Read

- Use Round Robin Scheduler
- Assume only 1 device-CPU
- Assume CISCOps spend 5x CPU cycles than
simple POSIX operations Inode-queue1 Inode-queue2

Linked list

CPU Cycles on File1: 5

CPU Cycles on File2: 0

- Pick inode-queue1 and execute
Append-CRC-Write

• Round Robin uses global Linked list to store inode-queues

25 | ©2022 Storage Networking Industry Association. All Rights Reserved.

In-storage Resource Scheduling

25

Read-CRC-Write

Read

Write

File1

File2

StorageFS

Device
CPU

Read

- Use Round Robin Scheduler
- Assume only 1 device-CPU
- Assume CISCOps spend 5x CPU cycles than
simple POSIX operations Inode-queue1 Inode-queue2

Linked list

CPU Cycles on File1: 5

CPU Cycles on File2: 1

- Pick inode-queue1 and execute
Append-CRC-Write

- Pick inode-queue2 and execute Read

• Round Robin uses global Linked list to store inode-queues

26 | ©2022 Storage Networking Industry Association. All Rights Reserved.

In-storage Resource Scheduling

26

Write

File1

File2

StorageFS

Device
CPU

Read

- Use Round Robin Scheduler
- Assume only 1 device-CPU
- Assume CISCOps spend 5x CPU cycles than
simple POSIX operations Inode-queue1 Inode-queue2

Read-CRC-Write

Linked list

CPU Cycles on File1:
10

CPU Cycles on File2: 1

- Pick inode-queue1 and execute
Append-CRC-Write

- Pick inode-queue2 and execute Read

- Pick inode-queue1 again and execute
Read-CRC-Write

• Round Robin uses global Linked list to store inode-queues

27 | ©2022 Storage Networking Industry Association. All Rights Reserved.

In-storage Resource Scheduling

27

Write

File1

File2

StorageFS

Device
CPU

Read

- Use Round Robin Scheduler
- Assume only 1 device-CPU
- Assume CISCOps spend 5x CPU cycles than
simple POSIX operations Inode-queue1 Inode-queue2

Read-CRC-Write

Linked list

CPU Cycles on File1:
10

CPU Cycles on File2: 1

- Pick inode-queue1 and execute
Append-CRC-Write

- Pick inode-queue2 and execute Read

- Pick inode-queue1 and execute Read-
CRC-Write

- Write op. for File2 must wait 5 CPU
cycles!!!

How to provide fairness
across tenants?

• Round Robin uses global Linked list to store inode-queues

28 | ©2022 Storage Networking Industry Association. All Rights Reserved.

In-storage CFS Resource Scheduling

28

• Prioritize inode-queues with the least CPU usage (i.e., virtual CPU runtime)
- StorageFS uses global RB-tree to store sorted virtime of inode-queues

- Use CFS Compute Scheduler
- Assume only 1 device-CPU
- Assume CISCOps spend 5x CPU cycles than
simple POSIX operations

Inode-queue1,
virtime = 0

Inode-queue2,
virtime = 0

Red-black tree

Append-CRC-Write

Read Write

File1

File2

StorageFS

Device
CPU

Read

Read-CRC-Write CPU Cycles on File1: 0

CPU Cycles on File2: 0

- Red-black tree for all inode-queues

- Initially, CPU cycles spent on each
file is 0

29 | ©2022 Storage Networking Industry Association. All Rights Reserved.

In-storage CFS Resource Scheduling

29

Append-CRC-Write

Read Write

File1

File2

StorageFS

Device
CPU

Read

- Use CFS Compute Scheduler
- Assume only 1 device-CPU
- Assume CISCOps spend 5x CPU cycles than
simple POSIX operations

Inode-queue1,
virtime = 5

Inode-queue2,
virtime = 0

Red-black tree

Read-CRC-Write CPU Cycles on File1: 5

CPU Cycles on File2: 0

- Pick inode-queue1 and execute
Append-CRC-Write

• Prioritize inode-queues with the least CPU usage (i.e., virtual CPU runtime)
- StorageFS uses global RB-tree to store sorted virtime of inode-queues

30 | ©2022 Storage Networking Industry Association. All Rights Reserved.

In-storage CFS Resource Scheduling

30

Read Write

File1

File2

StorageFS

Device
CPU

Read

- Use CFS Compute Scheduler
- Assume only 1 device-CPU
- Assume CISCOps spend 5x CPU cycles than
simple POSIX operations

Inode-queue2
virtime = 0

Inode-queue1
virtime = 5

Red-black tree

Read-CRC-Write

RB-Tree
Rebalanced

CPU Cycles on File1: 5

CPU Cycles on File2: 0

- Pick inode-queue1 and execute
Append-CRC-Write

- Rebalance RB-Tree

• Prioritize inode-queues with the least CPU usage (i.e., virtual CPU runtime)
- StorageFS uses global RB-tree to store sorted virtime of inode-queues

31 | ©2022 Storage Networking Industry Association. All Rights Reserved.

In-storage CFS Resource Scheduling

31

Write

File1

File2

StorageFS

Device
CPU

Read

- Use CFS Compute Scheduler
- Assume only 1 device-CPU
- Assume CISCOps spend 5x CPU cycles than
simple POSIX operations

Inode-queue2
virtime = 1

Inode-queue1
virtime = 5

Red-black tree

Read-CRC-Write

Read

CPU Cycles on File1: 5

CPU Cycles on File2: 1

- Pick inode-queue1 and execute
Append-CRC-Write

- Rebalance RB-Tree

- Pick inode-queue2 and execute Read

• Prioritize inode-queues with the least CPU usage (i.e., virtual CPU runtime)
- StorageFS uses global RB-tree to store sorted virtime of inode-queues

32 | ©2022 Storage Networking Industry Association. All Rights Reserved.

In-storage CFS Resource Scheduling

32

File1

File2

StorageFS

Device
CPU

Read

- Use CFS Compute Scheduler
- Assume only 1 device-CPU
- Assume CISCOps spend 5x CPU cycles than
simple POSIX operations

Inode-queue2
virtime = 2

Inode-queue1
virtime = 5

Red-black tree

Read-CRC-Write

Write

CPU Cycles on File1: 5

CPU Cycles on File2: 2

- Pick inode-queue1 and execute
Append-CRC-Write

- Rebalance RB-Tree

- Pick inode-queue2 and execute Read

- Pick inode-queue2 again and
execute Write

• Prioritize inode-queues with the least CPU usage (i.e., virtual CPU runtime)
- StorageFS uses global RB-tree to store sorted virtime of inode-queues

33 | ©2022 Storage Networking Industry Association. All Rights Reserved.

In-storage CFS Resource Scheduling

33

File1

File2

StorageFS

Device
CPU

- Use CFS Compute Scheduler
- Assume only 1 device-CPU
- Assume CISCOps spend 5x CPU cycles than
simple POSIX operations

Inode-queue2
virtime = 2

Inode-queue1
virtime = 5

Red-black tree

Read-CRC-Write

CFS I/O Scheduler
improved fairness
across tenants!CPU Cycles on File1: 5

CPU Cycles on File2: 2
Read

Write

• Prioritize inode-queues with the least CPU usage (i.e., virtual CPU runtime)
- StorageFS uses global RB-tree to store sorted virtime of inode-queues

34 | ©2022 Storage Networking Industry Association. All Rights Reserved. 34

In-storage CFS Resource Scheduling

• Efficient management of device-RAM is critical for fairness
- Modern CSDs are equipped with 4-16GB of memory

• A combination of in-storage data processing and POSIX could
cause in-storage memory contention and starvation

• Enhance the CFS scheduler with memory usage (memuse) accounting
for each inode-queue

35 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Crash Consistency for CISCOps

35

• How to provide crash consistency for CISCOps?

• Macro-transactions (MacroTx): all-or-nothing approach

• Micro-transactions (MicroTx): recover partially committed CISCOps

36 | ©2022 Storage Networking Industry Association. All Rights Reserved.

MacroTx:All-or-nothing Approach

36

• Commits and recovers an entire CISCOp including data processing
state or nothing

File1

StorageFS

Device
CPU

Append-CRC-Write

Journal

- Add transaction TxB

CISCOp
(Tx Begin)

Append
Log Entry

Write
Log Entry

CISCOp
(Tx End)

- Add log entry for Append

- Commit entire transaction (TxE)

- Execute Checksum on Device CPU

- Add log entry for WriteData Checksum

Redo the journal log
to recover the state.

37 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Append
Log Entry

37

File

StorageFS

Device
CPU

Append-CRC-Write

Journal

- Add transaction TxB

CISCOp
(Tx Begin)

- Add log entry for Append

- Execute Checksum on Device CPU

- Crash!

How to recover the
computational state

after crash?

Data

Write
Log Entry

CISCOp
(Tx End)

Not committed!

???

- Add log entry for Write

- Commit entire transaction (TxE)

MacroTx:All-or-nothing Approach
• Commits and recovers an entire CISCOp including data processing state or

nothing

38 | ©2022 Storage Networking Industry Association. All Rights Reserved.

MicroTx with Auto Recovery

38

• Supports crash consistency of partially committed CISCOps

• Each operation (micro-op) of a CISCOp can be independently committed

- Add transaction TxB and op log

- Add log entry for Append

- Add log entry for Checksum

- Crash!
File1

StorageFS

Device
CPU

Append-CRC-Write

Journal CISCOp
(Tx Begin)

Append
Log Entry1

LE1

Op Bitmap
Commit Bitmap
Commit PositonsLE2 LE3

1 1 1

Checksum
Log Entry2

Write
Log Entry3

CISCOp
(Tx End)

Op log

Op1 Op2 Op3

Data

11 0

39 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Not Committed!

- Check uncommitted micro-op

File1

StorageFS

Device
CPU

Append-CRC-Write

Journal

0

CISCOp
(Tx Begin)

Append
Log Entry1

LE1

Op Bitmap
Commit Bitmap
Commit PositonsLE2 LE3

1 1 1

Checksum
Log Entry2

Write
Log Entry3

CISCOp
(Tx End)

Op log

Op1 Op2 Op3
11

MicroTx with Auto Recovery

39

• Auto recovery: replay journal by checking op log and uncommitted bitmap

- Add transaction TxB and op log
- Add log entry for Append

- Execute Checksum on Device CPU

- Crash!

Data

- Add log entry for Write

- Commit entire transaction (TxE)

- Redo log entry with Op log

Op3 is a write op

Checksum

Redo-Op3 write checksum

Value of CRC is in LE2

40 | ©2022 Storage Networking Industry Association. All Rights Reserved.

• Background
• Motivation
• Design
• Evaluation
• Conclusion

40

Outline

41 | ©2022 Storage Networking Industry Association. All Rights Reserved. 41

Experimental Setup
• Hardware platform

- Dual-socket 64-core Xeon Scalable CPU @ 2.6GHz
- 512GB Intel Optane DC NVM

• Emulated in-storage FS (no programmable storage H/W)
- Dedicate device threads for handling I/O requests
- Add PCIe latency for all I/O operations
- Reduce CPU frequency for device CPUs (and memory bandwidth)

• State-of-the-art file systems
- ext4-DAX, NOVA [FAST’ 16] (Kernel-level file system)
- SplitFS [SOSP’ 19] (User-level file system)
- CrossFS [OSDI’ 20] (Firmware-level file system)

42 | ©2022 Storage Networking Industry Association. All Rights Reserved. 42

Evaluation Goals

• Understand effectiveness of FusionFS and CISCOps to reduce
I/O overheads

• Study MicroTx's durability and auto-recovery benefits

• Discuss overall Real-world application impact

• Evaluate effectiveness of CFS scheduler for resource
fairness across tenants?

43 | ©2022 Storage Networking Industry Association. All Rights Reserved.

0

1

2

3

4

1 4 8 16

T
hr

ou
gh

pu
t

(G
B/

s)

of threads

ext4-DAX
NOVA
SplitFS
CrossFS
FusionFS

43

Microbenchmark

3.3x

FusionFS achieves higher throughput by reducing data
movement and system call overhead with CISCops

0

1

2

3

4

1 4 8 16

T
hr

ou
gh

pu
t

(G
B/

s)

of threads

ext4-DAX
NOVA
SplitFS
CrossFS 4.5x

Append-CRC-Write Read-Modify-Write

44 | ©2022 Storage Networking Industry Association. All Rights Reserved. 44

Microbenchmark : CISCops for ext4-DAX
We applied CISCops on KernelFS: ext4-DAX

CISCops shows better performance on KernelFS

0

1

2

3

4

append-checksum-write read-modify-write

T
hr

ou
gh

pu
t

(G
B/

s)

ext4-DAX ext4-DAX-CISCops FusionFS

1.38x

45 | ©2022 Storage Networking Industry Association. All Rights Reserved. 45

Macro-benchmark: Filebench
For each workload, FusionFS will aggregated some common IO sequence to
CISCops. (e.g., open-write-close)

0

500

1000

1500

2000

Varmail Webserver Fileserver

T
hr

ou
gh

pu
t

(K
op

s/
s)

ext4-DAX NOVA
CrossFS FusionFS

4.64x

FusionFS shows promising speedup with all the workloads

46 | ©2022 Storage Networking Industry Association. All Rights Reserved. 46

Evaluation Goals

• Understand effectiveness of FusionFS and CISCOps to reduce
I/O overheads

• Study MicroTx's durability and auto-recovery benefits

• Discuss overall real-world application impact

• Evaluate effectiveness of CFS scheduler for resource
fairness across tenants?

47 | ©2022 Storage Networking Industry Association. All Rights Reserved.

0

20

40

60

80

100

4 64 128

T
hr

ou
gh

pu
t

(M
B/

s)

Value Size (KB)

ext4-DAX NOVA SplitFS

CrossFS FusionFS

47

Application - LevelDB
DBbench's random write workload by replacing checksum logic
with append-CRC-write CSICops

2.4x

FusionFS also shows high performance in LevelDB

48 | ©2022 Storage Networking Industry Association. All Rights Reserved. 48

Summary

• Motivation
- Reducing I/O overheads such as data copy, system calls, and PCI costs critical
- Leverage in-storage compute for I/O and data processing is critical!

• Solution – FusionFS
- Fuse I/O and data processing operations into one (CISCOps) and offload
- CFS I/O scheduler for fairness across multiple tenants
- MicroTx supports crash consistency and fast recovery

• Evaluation
- FusionFS shows up to 4x micro-benchmark performance gains
- Shows up to 2x application performance gains

49 | ©2022 Storage Networking Industry Association. All Rights Reserved. 49

Conclusion

• We believe it is critical to utilize in-storage resources to reduce I/O latency

• It is time for richer I/O abstractions that organically supports data processing

• We observe, efficient utilization of in-storage resources are critical for
addressing durability and resource management challenges
Source code available at

https://github.com/RutgersCSSystems/FusionFS

• Using CISCops, we take the first steps towards richer I/O abstractions

Thanks! Questions?

sudarsun.kannan@rutgers.edu

50 | ©2022 Storage Networking Industry Association. All Rights Reserved.

Please take a moment to rate this session.
Your feedback is important to us.

	Organic Redesign of Abstractions for Computational Storage Devices using CISCOps
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Explore RISC and richer CISC-styled I/O and data processing operations to reduce dominant overheads
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Please take a moment to rate this session.

