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Storage Hardware and Software Trends
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• Lack of organic support for leveraging in-storage compute for 
I/O and data processing operations and reducing I/O overheads

• Hardware trend: fast microseconds latency devices with 
increasing in-storage compute capabilities

• Software trend: fast user-level file systems to bypass the OS for 
reducing software overheads (“boundary crossing”)

• Unfortunately, dominating I/O overheads like data copy, system 
calls, PCI communication costs remain
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Evolving Storage with Fast Compute

CPU:   2-core 3-core 5-core                     > 8 cores *

RAM:   128MB DDR2 512MB LPDDR2 1GB LPDDR4           > 2GB LPDDR4 *

Year:   2008 2013 2018                          2022

Latency:         ~70𝜇𝜇s ~60𝜇𝜇s ~40𝜇𝜇s                      ~20𝜇𝜇s 

B/W:    250 MB/s 500 MB/s               3300 MB/s                6600 MB/s

Interface:   SATA 3.0               SATA 3.0 PCIe 4.0 PCIe 5.0

Samsung 840 Samsung 970Intel X25M Samsung PM1743

* Speculated specs In-storage compute is becoming powerful!
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State-of-the-art Designs

: data-plane ops : control-plane ops

DeviceFS

Application

FS Lib

Storage

Firmware FS

DevFS (FAST’ 18)
Insider (ATC ‘19)
CrossFS (OSDI ’20)

Kernel

Application

Compute
Offloading

PolarDB (FAST ‘20)
Newport CSD
ScaleFlux CSD

Data processing

FS
Kernel

Storage

UserFS

Application

FS Lib

Storage

Strata (SOSP ’17)
SplitFS (SOSP ’19)
FSP (SOSP ‘21)

Kernel
FS Server

Application

Storage

KernelFS

ext4-DAX
F2FS (FAST ’15)
NOVA (FAST ’16)

FS
Kernel



5 | ©2022 Storage Networking Industry Association. All Rights Reserved. 

Common I/O Sequences in Applications
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• Simple I/O operations to store or read state (e.g., write, read)

• Sequence of I/O operations (e.g., open-read-write-close in file servers)

• Operations coupled with data processing (e.g., append-checksum-write in 
key-value stores)

• Reducing I/O overheads, such as data copy, PCIe costs, and syscalls, 
across all I/O sequences is critical.
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• Background
• Motivation
• Design
• Evaluation
• Conclusion
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Outline
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Dominant I/O Overheads
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Dominant I/O Overheads
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Dominant I/O Overheads
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Storage Approaches Summary

Properties KernelFS UserFS DeviceFS Compute
offload FusionFS

Direct-access

Reduce data copy

Reduce PCIe cost

In-storage management

In-storage processing

Durability Data Data Data Data Data & 
Compute

Resource management

Security

Satisfy Not satisfyPartially satisfy
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• Background
• Motivation
• Design
• Evaluation
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Outline
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Our Solution: FusionFS
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• Exploits storage compute for fine-grained crash consistency and 
faster recovery

• Manages and provides fairness of in-storage resources through CFS

• To reduce I/O overheads, FusionFS offloads CISCOps to storage

• FusionFS aggregates I/O and data processing sequences into CISCOps
(Inspiration: CISC ISAs)



13 | ©2022 Storage Networking Industry Association. All Rights Reserved. 

RISC vs CISC
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• Two widely used ISAs: RISC and CISC

• Reduced instruction set computer (RISC)
- More instructions
- Each instruction takes one cycle time
- More complex compiler

• Complex instruction set computer (CISC)
- Fewer and richer instructions composed of simple instructions
- Each instruction takes a longer amount of cycle time
- More complex hardware logic
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Everlasting Debate

14
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Explore RISC and richer CISC-styled I/O and data 
processing operations to reduce dominant 

overheads

15

Our Goal
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FusionFS: RISC vs CISC operations
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• CISC operations (CISCOps) are aggregated I/O and data processing 
operations (e.g., append-checksum-write, open-read-write-close)

• We offload RISC and CISC operations to an in-storage file system (we 
also study CISCOps for traditional kernel file systems)

• RISC operations are simple POSIX I/O (e.g., read, write, close)

• CISCOps can significantly reduce dominant I/O overheads

• Unlike POSIX I/O vectors, CISCOps combines identical and non-
identical I/O and processing operations
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KernelFS Path:

2 syscalls + 4 data copies 
2 metadata copies + 2 PCIe costs

User space

Kernel space

User space

Storage

Only 1 data copy and 1 PCIe access with 
direct access and offload computing

Append(data) Write(crc) append_CRC_write (data)

CISCops Path:

checksum

FusionFS: CISC Operations

CISCops reduces data copy, syscalls, 
and PCIe overheads!

Storage

Append-Checksum-Write : Kernel Trap

: Data Copy

: Metadata Copy

: PCIe Cost
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WriteRawBlock(data) {
status = file->Append(data)
crc = crc32c::Value(data, size);
crc = crc32c::Extend(crc, trailer, 1);
EncodeFixed32(…crc32c::Mask(crc))
status = file->Append(Slice(trailer, size)

} LevelDB CRC with OS FS

WriteRawBlock(data) {
status = file->Append-CRC-Write(data)

}

With CISCops

FusionFS: CISCops Command
• Append-CRC-Write sequence in vanilla LevelDB code and proposed 

CISCops 
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 Support POSIX semantics
 Add I/O commands to I/O queue
 Convert POSIX I/O ops to CISC 

I/O ops
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FusionFS Components
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FusionFS I/O Processing Example

UserLib

StorageFS

Convert POSIX I/O ops to CISC 
IO ops

Insert I/O commands to inode-
queue

StorageFS fetches CICS IO 
commands from inode-queues

IO scheduler provides fairness
across multiple tenants

File1 File2

Insert 
command

Process 
command

Thread1
Op1*  append_checksum_write(fd1, buf, size=4k);
Op2 read(fd1, buf, sz = 4096, off = 0);

Thread2
Op3+ read_modify_write(fd2, buf, size=4k);
Op4 close(fd2);

Op1* Op2 Op3+ Op4

Kernel 
Component 

Compute Engine

IO Queue
Scheduler

Fine-grained 
Journaling

Credential 
Table

Journaling mechanism supports 
fine-grained crash consistency
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FusionFS I/O Permissions
• The StorageFS maintains a credential table that maps a unique 

process ID to its credentials

• OS generates random (128-bit) unique ID for each process and 
updates the firmware credential table

• StorageFS checks if a request’s unique ID matches credential table
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Challenges Introduced by CISCops

• How to provide fairness and efficient across tenants?
- Tenants using CISCOps can consume high device compute resources

- Device memory resources could also be high!
- Impacts tenants doing simple I/O

- Solution: CFS I/O Scheduler

• How to provide crash consistency for CISCOps?
- Recovery the internal computational state after crash
- Solution: MicroTx with Auto Recovery

• How to transparently generating, and offloading CISCOps?
- Solution: Partial Support for Automatic Offloading (AutoMerge)
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In-storage Resource Scheduling
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• Round Robin uses global Linked list to store inode-queues

Append-CRC-Write Read-CRC-Write

Read Write

File1

File2

StorageFS

Device
CPU

Read

Inode-queue1 Inode-queue2

Linked list

- Use Round Robin Scheduler
- Assume only 1 device-CPU
- Assume CISCOps spend 5x CPU cycles than
simple POSIX operations

CPU Cycles on File1: 0

CPU Cycles on File2: 0

- FusionFS maintains a global linked list
for all inode-queues

- Initially, CPU cycles spent on each file 
is 0
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In-storage Resource Scheduling
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Read-CRC-Write

Read

Write

File1

File2

StorageFS

Device
CPU

Read

- Use Round Robin Scheduler
- Assume only 1 device-CPU
- Assume CISCOps spend 5x CPU cycles than
simple POSIX operations Inode-queue1 Inode-queue2

Linked list

CPU Cycles on File1: 5

CPU Cycles on File2: 0

- Pick inode-queue1 and execute 
Append-CRC-Write

• Round Robin uses global Linked list to store inode-queues
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In-storage Resource Scheduling
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Read-CRC-Write

Read

Write

File1

File2

StorageFS

Device
CPU

Read

- Use Round Robin Scheduler
- Assume only 1 device-CPU
- Assume CISCOps spend 5x CPU cycles than
simple POSIX operations Inode-queue1 Inode-queue2

Linked list

CPU Cycles on File1: 5

CPU Cycles on File2: 1

- Pick inode-queue1 and execute 
Append-CRC-Write

- Pick inode-queue2 and execute Read

• Round Robin uses global Linked list to store inode-queues
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In-storage Resource Scheduling
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Write

File1

File2

StorageFS

Device
CPU

Read

- Use Round Robin Scheduler
- Assume only 1 device-CPU
- Assume CISCOps spend 5x CPU cycles than
simple POSIX operations Inode-queue1 Inode-queue2

Read-CRC-Write

Linked list

CPU Cycles on File1:
10

CPU Cycles on File2: 1

- Pick inode-queue1 and execute 
Append-CRC-Write

- Pick inode-queue2 and execute Read

- Pick inode-queue1 again and execute 
Read-CRC-Write

• Round Robin uses global Linked list to store inode-queues
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In-storage Resource Scheduling
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Write

File1

File2

StorageFS

Device
CPU

Read

- Use Round Robin Scheduler
- Assume only 1 device-CPU
- Assume CISCOps spend 5x CPU cycles than
simple POSIX operations Inode-queue1 Inode-queue2

Read-CRC-Write

Linked list

CPU Cycles on File1:
10

CPU Cycles on File2: 1

- Pick inode-queue1 and execute 
Append-CRC-Write

- Pick inode-queue2 and execute Read

- Pick inode-queue1 and execute Read-
CRC-Write

- Write op. for File2 must wait 5 CPU 
cycles!!!

How to provide fairness
across tenants?

• Round Robin uses global Linked list to store inode-queues
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In-storage CFS Resource Scheduling
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• Prioritize inode-queues with the least CPU usage (i.e., virtual CPU runtime)
- StorageFS uses global RB-tree to store sorted virtime of inode-queues

- Use CFS Compute Scheduler
- Assume only 1 device-CPU
- Assume CISCOps spend 5x CPU cycles than
simple POSIX operations

Inode-queue1, 
virtime = 0

Inode-queue2, 
virtime = 0

Red-black tree

Append-CRC-Write

Read Write

File1

File2

StorageFS

Device
CPU

Read

Read-CRC-Write CPU Cycles on File1: 0

CPU Cycles on File2: 0

- Red-black tree for all inode-queues

- Initially, CPU cycles spent on each 
file is 0
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In-storage CFS Resource Scheduling

29

Append-CRC-Write

Read Write

File1

File2

StorageFS

Device
CPU

Read

- Use CFS Compute Scheduler
- Assume only 1 device-CPU
- Assume CISCOps spend 5x CPU cycles than
simple POSIX operations

Inode-queue1, 
virtime = 5

Inode-queue2, 
virtime = 0

Red-black tree

Read-CRC-Write CPU Cycles on File1: 5

CPU Cycles on File2: 0

- Pick inode-queue1 and execute 
Append-CRC-Write

• Prioritize inode-queues with the least CPU usage (i.e., virtual CPU runtime)
- StorageFS uses global RB-tree to store sorted virtime of inode-queues
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In-storage CFS Resource Scheduling
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Read Write

File1

File2

StorageFS

Device
CPU

Read

- Use CFS Compute Scheduler
- Assume only 1 device-CPU
- Assume CISCOps spend 5x CPU cycles than
simple POSIX operations

Inode-queue2 
virtime = 0

Inode-queue1 
virtime = 5

Red-black tree

Read-CRC-Write

RB-Tree
Rebalanced

CPU Cycles on File1: 5

CPU Cycles on File2: 0

- Pick inode-queue1 and execute 
Append-CRC-Write

- Rebalance RB-Tree

• Prioritize inode-queues with the least CPU usage (i.e., virtual CPU runtime)
- StorageFS uses global RB-tree to store sorted virtime of inode-queues
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In-storage CFS Resource Scheduling
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Write

File1

File2

StorageFS

Device
CPU

Read

- Use CFS Compute Scheduler
- Assume only 1 device-CPU
- Assume CISCOps spend 5x CPU cycles than
simple POSIX operations

Inode-queue2 
virtime = 1

Inode-queue1 
virtime = 5

Red-black tree

Read-CRC-Write

Read

CPU Cycles on File1: 5

CPU Cycles on File2: 1

- Pick inode-queue1 and execute 
Append-CRC-Write

- Rebalance RB-Tree

- Pick inode-queue2 and execute Read

• Prioritize inode-queues with the least CPU usage (i.e., virtual CPU runtime)
- StorageFS uses global RB-tree to store sorted virtime of inode-queues
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In-storage CFS Resource Scheduling
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File1

File2

StorageFS

Device
CPU

Read

- Use CFS Compute Scheduler
- Assume only 1 device-CPU
- Assume CISCOps spend 5x CPU cycles than
simple POSIX operations

Inode-queue2 
virtime = 2

Inode-queue1 
virtime = 5

Red-black tree

Read-CRC-Write

Write

CPU Cycles on File1: 5

CPU Cycles on File2: 2

- Pick inode-queue1 and execute 
Append-CRC-Write

- Rebalance RB-Tree

- Pick inode-queue2 and execute Read

- Pick inode-queue2 again and 
execute Write

• Prioritize inode-queues with the least CPU usage (i.e., virtual CPU runtime)
- StorageFS uses global RB-tree to store sorted virtime of inode-queues
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In-storage CFS Resource Scheduling
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File1

File2

StorageFS

Device
CPU

- Use CFS Compute Scheduler
- Assume only 1 device-CPU
- Assume CISCOps spend 5x CPU cycles than
simple POSIX operations

Inode-queue2 
virtime = 2

Inode-queue1 
virtime = 5

Red-black tree

Read-CRC-Write

CFS I/O Scheduler 
improved fairness 
across tenants!CPU Cycles on File1: 5

CPU Cycles on File2: 2
Read

Write

• Prioritize inode-queues with the least CPU usage (i.e., virtual CPU runtime)
- StorageFS uses global RB-tree to store sorted virtime of inode-queues
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In-storage CFS Resource Scheduling

• Efficient management of device-RAM is critical for fairness
- Modern CSDs are equipped with 4-16GB of memory

• A combination of in-storage data processing and POSIX could 
cause in-storage memory contention and starvation

• Enhance the CFS scheduler with memory usage (memuse) accounting 
for each inode-queue
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Crash Consistency for CISCOps
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• How to provide crash consistency for CISCOps?

• Macro-transactions (MacroTx): all-or-nothing approach

• Micro-transactions (MicroTx): recover partially committed CISCOps
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MacroTx:All-or-nothing Approach
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• Commits and recovers an entire CISCOp including data processing 
state or nothing

File1

StorageFS

Device
CPU

Append-CRC-Write

Journal

- Add transaction TxB

CISCOp
(Tx Begin)

Append
Log Entry

Write
Log Entry

CISCOp
(Tx End)

- Add log entry for Append

- Commit entire transaction (TxE)

- Execute Checksum on Device CPU

- Add log entry for WriteData Checksum

Redo the journal log 
to recover the state.
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Append
Log Entry

37

File

StorageFS

Device
CPU

Append-CRC-Write

Journal

- Add transaction TxB

CISCOp
(Tx Begin)

- Add log entry for Append

- Execute Checksum on Device CPU

- Crash!

How to recover the 
computational state 

after crash?

Data

Write
Log Entry

CISCOp
(Tx End)

Not committed!

???

- Add log entry for Write

- Commit entire transaction (TxE)

MacroTx:All-or-nothing Approach
• Commits and recovers an entire CISCOp including data processing state or 

nothing
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MicroTx with Auto Recovery
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• Supports crash consistency of partially committed CISCOps

• Each operation (micro-op) of a CISCOp can be independently committed

- Add transaction TxB and op log

- Add log entry for Append

- Add log entry for Checksum

- Crash!
File1

StorageFS

Device
CPU

Append-CRC-Write

Journal CISCOp
(Tx Begin)

Append
Log Entry1

LE1

Op Bitmap
Commit Bitmap
Commit PositonsLE2 LE3

1 1 1

Checksum
Log Entry2

Write
Log Entry3

CISCOp
(Tx End)

Op log

Op1 Op2 Op3

Data

11 0
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Not Committed!

- Check uncommitted micro-op

File1

StorageFS

Device
CPU

Append-CRC-Write

Journal

0

CISCOp
(Tx Begin)

Append
Log Entry1

LE1

Op Bitmap
Commit Bitmap
Commit PositonsLE2 LE3

1 1 1

Checksum
Log Entry2

Write
Log Entry3

CISCOp
(Tx End)

Op log

Op1 Op2 Op3
11

MicroTx with Auto Recovery

39

• Auto recovery: replay journal by checking op log and uncommitted bitmap

- Add transaction TxB and op log
- Add log entry for Append

- Execute Checksum on Device CPU

- Crash!

Data

- Add log entry for Write

- Commit entire transaction (TxE)

- Redo log entry with Op log

Op3 is a write op

Checksum

Redo-Op3 write checksum

Value of CRC is in LE2
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• Design
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Outline
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Experimental Setup
• Hardware platform

- Dual-socket 64-core Xeon Scalable CPU @ 2.6GHz
- 512GB Intel Optane DC NVM

• Emulated in-storage FS (no programmable storage H/W)
- Dedicate device threads for handling I/O requests
- Add PCIe latency for all I/O operations
- Reduce CPU frequency for device CPUs (and memory bandwidth)

• State-of-the-art file systems
- ext4-DAX, NOVA [FAST’ 16] (Kernel-level file system)
- SplitFS [SOSP’ 19] (User-level file system)
- CrossFS [OSDI’ 20] (Firmware-level file system)
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Evaluation Goals

• Understand effectiveness of FusionFS and CISCOps to reduce 
I/O overheads

• Study MicroTx's durability and auto-recovery benefits

• Discuss overall Real-world application impact

• Evaluate effectiveness of CFS scheduler for resource 
fairness across tenants?
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Microbenchmark

3.3x

FusionFS achieves higher throughput by reducing data 
movement and system call overhead with CISCops

0

1

2

3

4

1 4 8 16

T
hr

ou
gh

pu
t 

(G
B/

s)

# of threads

ext4-DAX
NOVA
SplitFS
CrossFS 4.5x

Append-CRC-Write Read-Modify-Write



44 | ©2022 Storage Networking Industry Association. All Rights Reserved. 44

Microbenchmark : CISCops for ext4-DAX
We applied CISCops on KernelFS: ext4-DAX

CISCops shows better performance on KernelFS
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1.38x
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Macro-benchmark: Filebench
For each workload, FusionFS will aggregated some common IO sequence to 
CISCops. (e.g., open-write-close)
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CrossFS FusionFS

4.64x

FusionFS shows promising speedup with all the workloads
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Evaluation Goals

• Understand effectiveness of FusionFS and CISCOps to reduce 
I/O overheads

• Study MicroTx's durability and auto-recovery benefits

• Discuss overall real-world application impact

• Evaluate effectiveness of CFS scheduler for resource 
fairness across tenants?
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Application - LevelDB
DBbench's random write workload by replacing checksum logic 
with append-CRC-write CSICops

2.4x

FusionFS also shows high performance in LevelDB
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Summary

• Motivation
- Reducing I/O overheads such as data copy, system calls, and PCI costs critical
- Leverage in-storage compute for I/O and data processing is critical!

• Solution – FusionFS
- Fuse I/O and data processing operations into one (CISCOps) and offload
- CFS I/O scheduler for fairness across multiple tenants
- MicroTx supports crash consistency and fast recovery

• Evaluation
- FusionFS shows up to 4x micro-benchmark performance gains
- Shows up to 2x application performance gains
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Conclusion

• We believe it is critical to utilize in-storage resources to reduce I/O latency

• It is time for richer I/O abstractions that organically supports data processing

• We observe, efficient utilization of in-storage resources are critical for 
addressing durability and resource management challenges
Source code available at

https://github.com/RutgersCSSystems/FusionFS

• Using CISCops, we take the first steps towards richer I/O abstractions

Thanks! Questions?

sudarsun.kannan@rutgers.edu
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Please take a moment to rate this session. 
Your feedback is important to us. 
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