Computational Storage:
How do NVMe and SNIA CS Work Together

Bill Martin
SNIA TC Co-Chair
NVMe Computational Programs Co-Chair
SSD IO Standards Samsung Semiconductor Inc.
Agenda

- Overview of SNIA CS Model
- Overview of NVMe CP Model
- NVMe-SNIA mapping
- Summary
SNIA Computational Storage Architecture

Computational Storage Processor

- Host 1
- Host n
- Fabric (PCIe, Ethernet, etc)
- Resource Repository
- Computational Storage Resource(s)
- Computational Storage Engine (CSE)
- Computational Storage Drive (CSD)
- Device Memory

Computational Storage Drive

- Host 1
- Host n
- Fabric (PCIe, Ethernet, etc)
- Storage Controller
- Resource Repository
- Computational Storage Resource(s)
- Computational Storage Engine (CSE)
- Device Memory

Computational Storage Array

- Host 1
- Host n
- Fabric (PCIe, Ethernet, etc)
- Storage Controller
- Resource Repository
- Computational Storage Resource(s)
- Computational Storage Engine (CSE)
- Storage Device or CSD
- Device Memory

Transparent Storage Access
Proxyed Storage Access
Array Control
SNIA Architectural Elements for CS Drive
NVMe Computational Storage Architectural Components

- Compute Namespaces contain:
 - Compute Engines
 - Programs

- Programs operate on data in Subsystem Local Memory
 - Includes program input, output

- NVM Namespaces
 - Persistent storage of data
 - NVM
 - ZNS
 - KV

This presentation discusses NVMe work in progress, which is subject to change without notice.
Correlation of SNIA/NVMe terms

SNIA Terms
- Computational Storage Engine
- Computational Storage Engine Environment
- Resource Repository
 - Downloaded CSF
 - Pre-loaded CSF
- Function Data Memory (FDM)
- Allocated FDM (AFDM)
- Device Storage

NVMe Terms
- Compute Engine/Compute Namespace
- Virtual (Not Defined)
- Programs
 - Downloaded programs
 - Device-defined programs
- Subsystem Local Memory (SLM)
- Memory Range Set
- NVM Namespaces
Mapping to NVMe for Computational Storage

This presentation discusses NVMe work in progress, which is subject to change without notice.
Mapping to NVMe for Computational Storage

This presentation discusses NVMe work in progress, which is subject to change without notice.
Mapping to NVMe for Computational Storage

This presentation discusses NVMe work in progress, which is subject to change without notice.
Mapping to NVMe for Computational Storage

This presentation discusses NVMe work in progress, which is subject to change without notice.
Mapping to NVMe for Computational Storage

This presentation discusses NVMe work in progress, which is subject to change without notice.
Summary
Summary

SNIA

- A general architectural model for computational Storage
- Flexibility for a variety of protocols

NVMe

- A specific I/O Command Set for computational Programs
- Specific for the NVMe protocol

• Related Computational Storage sessions at the Summit include:
 • The Latest Efforts in the SNIA Computational Storage Technical Work Group
 • NVMe Computational Storage - An Update on the Standard
 • Programming with Computational Storage

• Join SNIA and NVMe in the standardization effort
Please take a moment to rate this session.

Your feedback is important to us.