
1 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved.

Programming with
Computational Storage

Oscar P Pinto, Principal Engineer
Samsung Semiconductor Inc.

2 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved.

Agenda

Overview
Computational Storage
SNIA and CS APIs
Working with an Example
Mapping APIs to Device
Summary

3 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved.

Adopting Computational Storage

 Data is being created at a exponential rate
 Storage has also grown to account for this growth

 NVMe SSDs provide better performance than ever before
 But their bandwidth not fully utilized by Host

 General purpose CPUs not able to fully tap this bandwidth
 Scaling limited by PCIe lanes

 SSDs have more internal bandwidth than utilized

 Fabrics overloaded with transferring data for processing and results
 What if data is processed where it resides, near storage?

 Computational Storage & Offloads tap into this
 Process data near storage
 Add compute to storage

4 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved.

SNIA CS API Library
About the Library

5 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved.

SNIA: Computational Storage APIs

 One Set of APIs across all CSx types
 CSP, CSD, CSA
 Common set of APIs for different CS devices

 One interface to different device and connectivity
choices
 Hardware ASIC, CPU, FPGA, etc
 NVMe/NVMe-oF, PCIe, custom, etc

 Configurations may be local/remote attached
 Hides vendor specific implementation details

below library
 Abstracts device specific details
 APIs to be OS agnostic

Device Storage

Device Memory

CSFCSEE
CSF

Storage
Controller

I/OMGMT

Resource
Repository

Computational
Storage Engine (CSE)

Cloud Computing AppsStorage Apps Data Analytics Apps

App Adaptor B

Device driver

SNIA CS API Library

fabric

User-space

Kernel space

Computational Storage Drive (CSD)

SW function HW function

decrypt decompress checksum

search compare sort

DB-search

eBPF RTL ASIC

transform

custom

custom

…

App Adaptor CApp Adaptor A

PluginPluginPlugin

6 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved.

SNIA: CS API Overview

 Uniform interface for multiple configurations
 APIs provided in common library

 Each CSx managed through its own device stack
 Plugins help connect CSx to abstracted CS interfaces
 Library may interface with additional plugins based on

implementation requirements
 Extensible Interface
 CS APIs abstract

 Discovery
 Device Access
 Device Memory (mapped/unmapped)
 Near Storage Access
 Copy Device Memory
 Download CSFs
 Execute CSFs
 Device Management

Device Storage

Device Memory

CSFCSEE
CSF

Storage
Controller

I/OMGMT

Resource
Repository

Computational
Storage Engine (CSE)

Cloud Computing AppsStorage Apps Data Analytics Apps

App Adaptor B

Device driver

SNIA CS API Library

fabric

User-space

Kernel space

Computational Storage Drive (CSD)

SW function HW function

decrypt decompress checksum

search compare sort

DB-search

eBPF RTL ASIC

transform

custom

custom

…

App Adaptor CApp Adaptor A

PluginPluginPlugin

7 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved.

Key APIs of Interest
Functionality API Details
Discovery

csQueryCSxList() • Discover available Computational Storage Devices (CSxes)
csGetCSxFromPath() • Identify CSx associated with storage path
csQueryCSFList() • Discover available Computational Storage Functions (CSFs) in given storage path

Access
csOpenCSx() • Access a CSx
csCloseCSx() • Release access to previously opened CSx

Memory
csAllocMem() • Allocate memory for CSF usage
csFreeMem() • Free previously allocated memory

Storage
csQueueStorageRequest() • Issue a read/write request to transfer data between storage and device memory

Copy
csQueueCopyMemRequest() • Transfer data between device memory and host memory

Compute
csGetCSFId() • Get access to a CSF to execute
csQueueComputeRequest() • Schedule a CSF to execute work on device

Management
csQueryDeviceProperties() • Query device resources
csConfig() • Configure device resource
csDownload() • Download a CSF to device

8 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved.

APIs by Example
A step-by-step guide

9 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved.

Example: Find Specific Data

DecompressLoad Data From
Storage Decrypt Scan Copy Results to

Host

Desired compute offload

Price Sold < $800,000

Bedrooms

Baths

Single Family

City

Zipcode

Search Criteria

10 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved.

Device Storage

Device Memory

CSFCSEE
CSF

Storage
Controller

I/OMGMT

Resource
Repository

Computational
Storage Engine (CSE)

Example: Find Specific Data - Steps

1. Discover CSx & Access
2. Find CSFs
3. Allocate Device Memory
4. Load Storage data in Device Memory
5. Decrypt Data
6. Decompress Data
7. Run Scan Filter
8. Copy Results

Application

Device driver

SNIA CS API Library

PluginPluginPlugin

User-space

Kernel space

1

2

3
4 5 6 7

8

11 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved.

Example: Discovery

1. Discover CSx & Access it
a. Discover your Computational Storage Device (CSx)
b. Get access to CSx

2. Discover Functions in CSx

// discover my CS device (CSx)

length = sizeof(csxBuffer);

status = csGetCSxFromPath(file_path, &length, &csxBuffer);

// gain access

status = csOpenCSx(csxBuffer, &MyDevContext, &devHandle);

// discover CSFs using csGetCSFId API

status = csGetCSFId(devHandle, “decrypt”, &infoLength. &csfInfo);

decryptId = buffer.CSFId;

...

// download CSFs if required

status = csDownload(devHandle, &programInfo);

typedef struct {

CS_CSF_ID CSFId; // unique CSF Identifier

u8 RelativePerformance; // values [1-10]; higher is better

u8 RelativePower; // values [1-10]; lower is better

u8 Count; // number of CSF instances available

} CSFIdInfo;

*API return status values are not shown to check for success and errors to ease readability

This presentation discusses SNIA work in progress,
which is subject to change without notice

12 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved.

Example: Allocate Device Memory

3. Allocate Device Memory
 Allocate memory for all required buffers

 Buffer1 - load data from storage
 Buffer2 – hold decrypted data from Buffer1
 Buffer3 – hold decompressed data from Buffer2
 Buffer4 – collect results of search

// allocate device memory for input and output buffers

status = csAllocMem(devHandle, CHUNK_SIZE, 0, &inputMemHandle, NULL);

status = csAllocMem(devHandle, CHUNK_SIZE, 0, &decryptMemHandle, NULL);

status = csAllocMem(devHandle, MAX_CHUNK_SIZE, 0, &decompMemHandle, NULL);

status = csAllocMem(devHandle, CHUNK_SIZE, 0, &resultsMemHandle, NULL);

13 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved.

Example: Load Storage Data

4. Load Storage Data directly in Device Memory
// allocate storage request & read chunk size data from file handle fd

storReq = calloc(1, sizeof(CsStorageRequest));

if (!storReq) { ERROR_OUT("memory alloc error\n"); }

storReq->Mode = CS_STORAGE_FILE_IO;

storReq->DevHandle = devHandle;

storReq->u.CsFileIo.Type = CS_STORAGE_LOAD_TYPE;

storReq->u.CsFileIo.FileHandle = fd;

storReq->u.CsFileIo.Offset = 0;

storReq->u.CsFileIo.Bytes = CHUNK_SIZE;

storReq->u.CsFileIo.DevMem.MemHandle = inputMemHandle;

storReq->u.CsFileIo.DevMem.ByteOffset = 0;

status = csQueueStorageRequest(storReq, storReq, NULL, NULL, NULL);

DecompressLoad Data From
Storage Decrypt Scan Copy Results to

Host

14 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved.

Example: Decrypt Data

5. Decrypt Storage Data Loaded in Device Memory
 Run Decrypt CSF in device

// allocate compute request for 3 args & issue compute request

compReq = calloc(1, sizeof(CsComputeRequest) + (sizeof(CsComputeArg) * 3));

if (!compReq) { ERROR_OUT("memory alloc error\n"); }

compReq->DevHandle = devHandle;

compReq->FunctionId = decryptId;

compReq->NumArgs = 3;

argPtr = &compReq->Args[0];

csHelperSetComputeArg(&argPtr[0], CS_AFDM_TYPE, inputMemHandle, 0);

csHelperSetComputeArg(&argPtr[1], CS_32BIT_VALUE_TYPE, CHUNK_SIZE);

csHelperSetComputeArg(&argPtr[2], CS_AFDM_TYPE, decryptMemHandle, 0);

status = csQueueComputeRequest(compReq, NULL, NULL, NULL, NULL);

DecompressLoad Data From
Storage Decrypt Scan Copy Results to

Host

15 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved.

Example: Decompress Data

6. Decompress the Decrypted Data in Device Memory
 Run Decompress CSF in device

// allocate compute request for 3 args & issue compute request

compReq = calloc(1, sizeof(CsComputeRequest) + (sizeof(CsComputeArg) * 3));

if (!compReq) { ERROR_OUT("memory alloc error\n"); }

compReq->DevHandle = devHandle;

compReq->FunctionId = decompId;

compReq->NumArgs = 3;

argPtr = &compReq->Args[0];

csHelperSetComputeArg(&argPtr[0], CS_AFDM_TYPE, decryptMemHandle, 0);

csHelperSetComputeArg(&argPtr[1], CS_32BIT_VALUE_TYPE, CHUNK_SIZE);

csHelperSetComputeArg(&argPtr[2], CS_AFDM_TYPE, decompMemHandle, 0);

status = csQueueComputeRequest(compReq, NULL, NULL, NULL, NULL);

DecompressLoad Data From
Storage Decrypt Scan Copy Results to

Host

16 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved.

Example: Scan Data

7. Scan the Decompressed Data for Records
 Run Scan Query Filter in device

// allocate compute request for 3 args & issue compute request

compReq = calloc(1, sizeof(CsComputeRequest) + (sizeof(CsComputeArg) * 3));

if (!compReq) { ERROR_OUT("memory alloc error\n"); }

compReq->DevHandle = devHandle;

compReq->FunctionId = ScanId;

compReq->NumArgs = 3;

argPtr = &compReq->Args[0];

csHelperSetComputeArg(&argPtr[0], CS_AFDM_TYPE, decompMemHandle, 0);

csHelperSetComputeArg(&argPtr[1], CS_32BIT_VALUE_TYPE, MAX_CHUNK_SIZE);

csHelperSetComputeArg(&argPtr[2], CS_AFDM_TYPE, resultsMemHandle, 0);

status = csQueueComputeRequest(compReq, NULL, NULL, NULL, NULL);

DecompressLoad Data From
Storage Decrypt Scan Copy Results to

Host

17 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved.

Example: Copy Results

8. Copy Output Results to Host
 Copy Device Memory Contents to Host

// allocate copy request & copy results to host buffer

copyReq = calloc(1, sizeof(CsCopyMemRequest));

if (!copyReq) { ERROR_OUT("memory alloc error\n"); }

copyReq->Type = CS_COPY_FROM_DEVICE;

copyReq->HostVAddress = results_buf;

copyReq->DevMem.MemHandle = resultsMemHandle;

copyReq->DevMem.ByteOffset = 0;

copyReq->Bytes = CHUNK_SIZE;

status = csQueueCopyMemRequest(copyReq, NULL, NULL, NULL, NULL);

DecompressLoad Data From
Storage Decrypt Scan Copy Results to

Host

18 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved.

The Batch Request

Create one Batch request that includes other requests in one job
 Optimization for recurring jobs
 Submit request and get notified on Results

DecompressLoad Data From
Storage Decrypt Scan Copy Results to

Host

csQueueBatchRequest()

19 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved.

CS APIs with NVMe
How do they work?

20 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved.

Mapping to NVMe for Computational Storage

 NVMe is developing an interface for
Computational Storage*
 Computational Programs Namespace

 Support one or more Compute Engines (CE)
 Support one or more Computational Programs

 Computational Programs may be device-defined or
downloaded

 New I/O command set
 Local Memory

 Subsystem level scope
 Used by Computational Programs

 Storage Namespace
 Map to a virtualized environment

 SNIA abstractions map to NVMe CS
developments

Device Storage

Device Memory

CSFCSEE
CSF

Storage
Controller

I/OMGMT

Resource
Repository

Computational
Storage Engine (CSE)

Computational Storage Drive (CSD)

Storage Namespace nStorage Namespace n

port

Storage Namespace Z

CE
0

CE
1

programprogramProgram 0

Computational Programs
Namespace X

Local Memory
Y

NVMe Controller

CE
2

…

NVMe SSD

FUNCTION

COMPUTE

MEMORY

STORAGE

SNIA

NVMe

*Optional support in NVMe

This presentation discusses NVMe work in
progress, which is subject to change without notice

21 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved.

Summary

22 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved.

Summary

SNIA: a generic Programming Interface for Computational Storage
APIs map to different solutions
Simple to follow and scalable
Attend other Computational Storage sessions at the Summit

 Join the standardization efforts
 SNIA, NVMe

Help build the ecosystem

23 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved.

Please take a moment to rate this session.
Your feedback is important to us.

	Programming with Computational Storage
	Agenda
	Adopting Computational Storage
	SNIA CS API Library
	SNIA: Computational Storage APIs
	SNIA: CS API Overview
	Key APIs of Interest
	APIs by Example
	Example: Find Specific Data
	Example: Find Specific Data - Steps
	Example: Discovery
	Example: Allocate Device Memory
	Example: Load Storage Data
	Example: Decrypt Data
	Example: Decompress Data
	Example: Scan Data
	Example: Copy Results
	The Batch Request
	CS APIs with NVMe
	Mapping to NVMe for Computational Storage
	Summary
	Summary
	Please take a moment to rate this session.

