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Agenda

Overview
Computational Storage
SNIA and CS APIs
Working with an Example
Mapping APIs to Device
Summary
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Adopting Computational Storage

 Data is being created at a exponential rate
 Storage has also grown to account for this growth

 NVMe SSDs provide better performance than ever before
 But their bandwidth not fully utilized by Host

 General purpose CPUs not able to fully tap this bandwidth
 Scaling limited by PCIe lanes

 SSDs have more internal bandwidth than utilized

 Fabrics overloaded with transferring data for processing and results
 What if data is processed where it resides, near storage?

 Computational Storage & Offloads tap into this
 Process data near storage
 Add compute to storage
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SNIA CS API Library
About the Library
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SNIA: Computational Storage APIs

 One Set of APIs across all CSx types
 CSP, CSD, CSA
 Common set of APIs for different CS devices

 One interface to different device and connectivity 
choices
 Hardware ASIC, CPU, FPGA, etc
 NVMe/NVMe-oF, PCIe, custom, etc

 Configurations may be local/remote attached
 Hides vendor specific implementation details 

below library
 Abstracts device specific details
 APIs to be OS agnostic
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SNIA: CS API Overview

 Uniform interface for multiple configurations
 APIs provided in common library

 Each CSx managed through its own device stack
 Plugins help connect CSx to abstracted CS interfaces
 Library may interface with additional plugins based on 

implementation requirements
 Extensible Interface
 CS APIs abstract

 Discovery
 Device Access
 Device Memory (mapped/unmapped)
 Near Storage Access
 Copy Device Memory
 Download CSFs
 Execute CSFs
 Device Management
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Key APIs of Interest 
Functionality API Details
Discovery

csQueryCSxList() • Discover available Computational Storage Devices (CSxes)
csGetCSxFromPath() • Identify CSx associated with storage path
csQueryCSFList() • Discover available Computational Storage Functions (CSFs) in given storage path

Access
csOpenCSx() • Access a CSx
csCloseCSx() • Release access to previously opened CSx

Memory
csAllocMem() • Allocate memory for CSF usage
csFreeMem() • Free previously allocated memory

Storage
csQueueStorageRequest() • Issue a read/write request to transfer data between storage and device memory

Copy
csQueueCopyMemRequest() • Transfer data between device memory and host memory

Compute
csGetCSFId() • Get access to a CSF to execute
csQueueComputeRequest() • Schedule a CSF to execute work on device

Management
csQueryDeviceProperties() • Query device resources
csConfig() • Configure device resource
csDownload() • Download a CSF to device
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APIs by Example
A step-by-step guide
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Example: Find Specific Data
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Example: Discovery

1. Discover CSx & Access it
a. Discover your Computational Storage Device (CSx)
b. Get access to CSx

2. Discover Functions in CSx

// discover my CS device (CSx)

length = sizeof(csxBuffer);

status = csGetCSxFromPath(file_path, &length, &csxBuffer);

// gain access

status = csOpenCSx(csxBuffer, &MyDevContext, &devHandle);  

// discover CSFs using csGetCSFId API

status = csGetCSFId(devHandle, “decrypt”, &infoLength. &csfInfo);

decryptId = buffer.CSFId;

...

// download CSFs if required

status = csDownload(devHandle, &programInfo);

typedef struct {

CS_CSF_ID CSFId;         // unique CSF Identifier

u8 RelativePerformance;  // values [1-10]; higher is better

u8 RelativePower;        // values [1-10]; lower is better

u8 Count;                // number of CSF instances available

} CSFIdInfo;

*API return status values are not shown to check for success and errors to ease readability

This presentation discusses SNIA work in progress, 
which is subject to change without notice
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Example: Allocate Device Memory

3. Allocate Device Memory
 Allocate memory for all required buffers

 Buffer1 - load data from storage
 Buffer2 – hold decrypted data from Buffer1
 Buffer3 – hold decompressed data from Buffer2
 Buffer4 – collect results of search

// allocate device memory for input and output buffers

status = csAllocMem(devHandle, CHUNK_SIZE, 0, &inputMemHandle, NULL);

status = csAllocMem(devHandle, CHUNK_SIZE, 0, &decryptMemHandle, NULL);   

status = csAllocMem(devHandle, MAX_CHUNK_SIZE, 0, &decompMemHandle, NULL);

status = csAllocMem(devHandle, CHUNK_SIZE, 0, &resultsMemHandle, NULL);
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Example: Load Storage Data

4. Load Storage Data directly in Device Memory
// allocate storage request & read chunk size data from file handle fd

storReq = calloc(1, sizeof(CsStorageRequest));

if (!storReq) { ERROR_OUT("memory alloc error\n"); }

storReq->Mode = CS_STORAGE_FILE_IO;

storReq->DevHandle = devHandle;

storReq->u.CsFileIo.Type = CS_STORAGE_LOAD_TYPE;

storReq->u.CsFileIo.FileHandle = fd;

storReq->u.CsFileIo.Offset = 0;

storReq->u.CsFileIo.Bytes = CHUNK_SIZE;

storReq->u.CsFileIo.DevMem.MemHandle = inputMemHandle;

storReq->u.CsFileIo.DevMem.ByteOffset = 0;

status = csQueueStorageRequest(storReq, storReq, NULL, NULL, NULL);

DecompressLoad Data From 
Storage Decrypt Scan Copy Results to 

Host
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Example: Decrypt Data

5. Decrypt Storage Data Loaded in Device Memory
 Run Decrypt CSF in device

// allocate compute request for 3 args & issue compute request

compReq = calloc(1, sizeof(CsComputeRequest) + (sizeof(CsComputeArg) * 3));

if (!compReq) { ERROR_OUT("memory alloc error\n"); }

compReq->DevHandle = devHandle; 

compReq->FunctionId = decryptId;

compReq->NumArgs = 3;

argPtr = &compReq->Args[0];

csHelperSetComputeArg(&argPtr[0], CS_AFDM_TYPE, inputMemHandle, 0);

csHelperSetComputeArg(&argPtr[1], CS_32BIT_VALUE_TYPE, CHUNK_SIZE);

csHelperSetComputeArg(&argPtr[2], CS_AFDM_TYPE, decryptMemHandle, 0);

status = csQueueComputeRequest(compReq, NULL, NULL, NULL, NULL);

DecompressLoad Data From 
Storage Decrypt Scan Copy Results to 

Host
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Example: Decompress Data

6. Decompress the Decrypted Data in Device Memory
 Run Decompress CSF in device

// allocate compute request for 3 args & issue compute request

compReq = calloc(1, sizeof(CsComputeRequest) + (sizeof(CsComputeArg) * 3));

if (!compReq) { ERROR_OUT("memory alloc error\n"); }

compReq->DevHandle = devHandle; 

compReq->FunctionId = decompId;

compReq->NumArgs = 3;

argPtr = &compReq->Args[0];

csHelperSetComputeArg(&argPtr[0], CS_AFDM_TYPE, decryptMemHandle, 0);

csHelperSetComputeArg(&argPtr[1], CS_32BIT_VALUE_TYPE, CHUNK_SIZE);

csHelperSetComputeArg(&argPtr[2], CS_AFDM_TYPE, decompMemHandle, 0);

status = csQueueComputeRequest(compReq, NULL, NULL, NULL, NULL);

DecompressLoad Data From 
Storage Decrypt Scan Copy Results to 

Host
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Example: Scan Data

7. Scan the Decompressed Data for Records
 Run Scan Query Filter in device

// allocate compute request for 3 args & issue compute request

compReq = calloc(1, sizeof(CsComputeRequest) + (sizeof(CsComputeArg) * 3));

if (!compReq) { ERROR_OUT("memory alloc error\n"); }

compReq->DevHandle = devHandle; 

compReq->FunctionId = ScanId;

compReq->NumArgs = 3;

argPtr = &compReq->Args[0];

csHelperSetComputeArg(&argPtr[0], CS_AFDM_TYPE, decompMemHandle, 0);

csHelperSetComputeArg(&argPtr[1], CS_32BIT_VALUE_TYPE, MAX_CHUNK_SIZE);

csHelperSetComputeArg(&argPtr[2], CS_AFDM_TYPE, resultsMemHandle, 0);

status = csQueueComputeRequest(compReq, NULL, NULL, NULL, NULL);

DecompressLoad Data From 
Storage Decrypt Scan Copy Results to 

Host
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Example: Copy Results

8. Copy Output Results to Host
 Copy Device Memory Contents to Host

// allocate copy request & copy results to host buffer

copyReq = calloc(1, sizeof(CsCopyMemRequest));

if (!copyReq) { ERROR_OUT("memory alloc error\n"); }

copyReq->Type = CS_COPY_FROM_DEVICE;

copyReq->HostVAddress = results_buf;

copyReq->DevMem.MemHandle = resultsMemHandle;

copyReq->DevMem.ByteOffset = 0;

copyReq->Bytes = CHUNK_SIZE;

status = csQueueCopyMemRequest(copyReq, NULL, NULL, NULL, NULL);

DecompressLoad Data From 
Storage Decrypt Scan Copy Results to 

Host
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The Batch Request

Create one Batch request that includes other requests in one job
 Optimization for recurring jobs
 Submit request and get notified on Results

DecompressLoad Data From 
Storage Decrypt Scan Copy Results to 

Host

csQueueBatchRequest()
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CS APIs with NVMe
How do they work?



20 | ©2022 Storage Networking Industry Association ©. Samsung Electronics. All Rights Reserved. 

Mapping to NVMe for Computational Storage

 NVMe is developing an interface for 
Computational Storage*
 Computational Programs Namespace

 Support one or more Compute Engines (CE)
 Support one or more Computational Programs

 Computational Programs may be device-defined or 
downloaded

 New I/O command set
 Local Memory

 Subsystem level scope
 Used by Computational Programs

 Storage Namespace
 Map to a virtualized environment

 SNIA abstractions map to NVMe CS 
developments
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*Optional support in NVMe

This presentation discusses NVMe work in 
progress, which is subject to change without notice
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Summary
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Summary

SNIA: a generic Programming Interface for Computational Storage
APIs map to different solutions
Simple to follow and scalable
Attend other Computational Storage sessions at the Summit

 Join the standardization efforts
 SNIA, NVMe

Help build the ecosystem
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Please take a moment to rate this session. 
Your feedback is important to us. 
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