

VIRTUAL EVENT • MAY 24-25, 2022

# Al Memory at Meta: Challenges and Potential Solutions

Presented by Chris Petersen

#### Al at Meta

&Across many applications/services and at scale  $\rightarrow$  driving a portion of our overall infrastructure (both HW and SW)

Keypoint

Segmentation

Augmented Reality

with Smart Camera

🔀 Ranking and recommendation - Video, Ranking, Search...

🔀 Content understanding - Computer vision, Speech, Translation, NLP, Video...

#### &From data centers to the edge



#### Problem Statement: AI workloads scale rapidly

& Compute, Memory BW, Memory Capacity, all scale for frontier models

Scaling typically is faster than scaling of technology

∑ The rapid scaling requires more vertical integration from SW requirements to HW design



#### Recommendation models (e.g. DLRM)

- ℵ One of the main drivers of AI HW platforms
- Most of the memory capacity is contributed by sparse features (embedding tables)
  - 🔀 Dense
    - Requires high BW at low capacity
  - 🔀 Sparse
    - Requires high capacity at high BW



https://ai.facebook.com/blog/dlrm -an-advanced -open -source -deep -learning -recommendation -model/



## **DLRM Requirements**

#### 🗞 Bandwidth

- 1. Considerable portion of capacity needs high BW Accelerator memory.
- 2. Inference has a bigger portion of the capacity at low Bandwidth. More so than training.



#### & Latency

3. Inference has a tight latency requirement, even on the low BW end



Capacity



#### System Implications of DLRM Requirements

- A tier of memory **beyond HBM and DRAM** can be leveraged, particularly for inference
  - Higher latency than main memory. But still tight latency profile (e.g TLC Nand Flash does not work)
  - ✗ Trade off performance for capacity
  - ℅ This does not negate the Capacity and BW demand for HBM and DRAM





Capacity



#### How does it fit in the whole e2e system?

- ℵ Different scenarios in real use cases
  - 🔀 Simpler HW
  - ℅ Avoiding scale out
  - ℅ Facilitate Multi-tenancy



SUPPORTING MASSIVE DLRM INFERENCE THROUGH SOFTWARE DEFINED MEMORY

#### An **Example** Implementation

Ehsan K. Ardestani <sup>1</sup> Changkyu Kim <sup>1</sup> Seung Jae Lee <sup>1</sup> Luoshang Pan <sup>1</sup> Valmiki Rampersad <sup>1</sup> Jens Axboe <sup>1</sup> Banit Agrawal <sup>1</sup> Fuxun Yu <sup>2</sup> Ansha Yu <sup>1</sup> Trung Le <sup>3</sup> Hector Yuen <sup>1</sup> Dheevatsa Mudigere <sup>1</sup> Shishir Juluri <sup>1</sup> Akshat Nanda <sup>1</sup> Manoj Wodekar <sup>1</sup> Krishnakumar Nair <sup>1</sup> Maxim Naumov <sup>1</sup> Chris Peterson <sup>1</sup> Mikhail Smelianskiy <sup>1</sup> Vijay Rao <sup>1</sup>

- ∑ The published work below mainly focuses on the lowest memory tier (using NVMe SSDs)
- ℵ Software Defined Memory backed by SSDs
  - ✗ The BW demand required SCM SSDs
    - High IO rate at Smaller access granularity
  - Application level Caching in main memory
    - Row cache due to lack of spatial locality
  - ℅ Fast IO (io\_uring)
  - ➢ Placement policies among DRAM and SSDs
    - To improve overall performance



#### Impact Scenario #1: Save Power with Simpler HW

Deployment of a **143 GB** model with SDM enabled system, with simpler HW, can reach the same latency as deployment on a more complex model with more DRAM resulting in **20% power savings**.

| Scenario                                     | QPS | Power | Total Hosts | Total<br>Power |
|----------------------------------------------|-----|-------|-------------|----------------|
| Baseline: 2-Socket, High Mem Capacity        | 240 | 1.0   | 1200        | 1200           |
| SDM system: 1-socket, Low Mem Capacity + SDM | 120 | 0.4   | 2400        | 960            |



#### Impact scenario #2: Save Power by Avoiding Scale out

- Systems with higher compute (e.g. using accelerators) require higher BW throughout the memory hierarchy
- Using SDM with a SCM SSD for a 150 GB model prevents scale out, saves power by 5%, and allows for a simpler serving paradigm

| Scenario                     | QPS | Host<br>Power | Total<br>Hosts | E2E<br>Power |
|------------------------------|-----|---------------|----------------|--------------|
| <u>Baseline</u> : Scale Out  | 450 | 1.0+0.25      | 1500+300       | 100%         |
| <u>Option 1</u> : Nand Flash | 230 | 1.4           | 2978           | 189%         |
| Option 2: SCM SSD            | 450 | 1.0 🤇         | 1500           | 95%          |

## Memory Tiers at a High Level



## Summary

- ℵ AI Models scale faster than the underlying memory technology
- Additional tiers of memory beyond host DRAM can help (aka Capacity Memory)
- ℵ This memory tier can trade off some performance for capacity
- ℵ CXL provides a viable option to enable this new memory tier







## Please take a moment to rate this session.

+Your feedback is important to us.