Storage for a New Generation of AI/ML

Presented by
Somnath Roy – Principle Engineer – Samsung Memory Solutions Lab
Current State of AI/ML

• Focus on Large-Scale AI/ML (at least >1PB storage for training data)
 • Large-Scale Use cases:
 • Fraud prevention and risk analysis
 • Natural Language Processing
 • Real-time price optimization
 • Autonomous driving

• Compute has evolved rapidly with new algorithms and GPUs
 • In fact with the advent of GPU direct, NVIDIA is claiming bottleneck is on storage

• Can large-scale storage performance keep up with compute?
 • High read BW requirement (>1TB/s per rack) for running AI training at scale with thousands of GPUs in parallel
DSS: Performant & Scalable Object Storage

Disaggregated Storage Solution (DSS)

Services
- Samsung developed – open sourced
 - https://github.com/OpenMPDK/DSS
- NVMeoF based S3 Service
- High Read Throughput Object Storage
- Disaggregated Storage and compute
- Shared everything architecture
- Zero copy key-value transfer
- Easy Scaling at Exabytes

Use Cases
- Large scale high READ throughput AI training
- Image Analytics
- Audio/Video AI
- Metaverse

Diagram Description

- **App Client 1** connected to **DSS Object Store -1** and **DSS Object Store -2**
- **App Client N** connected to **DSS Object Store -3** and **DSS Object Store -4**
- **DSS Open-Mpdk** and **NVMeoF KV Driver**
- **NIC 1** - Nvidia ConnectX-5 (100G)
- **NIC 2** - Nvidia ConnectX-5 2 (100G)
- **DSS Target RDMA stack QPS on NIC-1**
- **DSS Target RDMA stack QPS on NIC-2**
- **DSS Target Subsystem -1**
- **DSS Target Subsystem -2**
- **DSS Target SPDK/DPDK layer**
- **PCIe GEN3x4 connections**
- **PM1733a 32TB (V6 TLC), U.2 x 32EA**

Use Cases

- Large scale high READ throughput AI training
- Image Analytics
- Audio/Video AI
- Metaverse
DSS Enhanced Minio Object-Store

Stock Minio Shared-nothing architecture (Compute has to grow along with storage)

DSS Minio disaggregated, Shared-everything architecture (Compute and storage can grow independently)

Distributed Locking & EC/replication traffic

KV-NVMF
Reference Minio + DSS deployment model for AMD

- VLAN1: 201.100.*
- VLAN2: 202.100.*
- VLAN3: 203.100.*
- VLAN4: 204.100.*
- VLAN5: 205.100.*
- VLAN6: 206.100.*
- VLAN7: 207.100.*

- Dist DSS Minio-1
- Dist DSS Minio-2
- Dist DSS Minio-3
- Dist DSS Minio-4

- DSS KV-API
- DSS KV-API
- DSS KV-API
- DSS KV-API

- NVMeOF-KV RDMA Driver
- NVMeOF-KV RDMA Driver
- NVMeOF-KV RDMA Driver
- NVMeOF-KV RDMA Driver

- Memory Interleaving
- Memory Interleaving
- Memory Interleaving
- Memory Interleaving

- S3 bench client-1: 202.100.*
- S3 bench client-2: 204.100.*
- S3 bench client-3: 206.100.*
- S3 bench client-4: 208.100.*

- KV-pool (SPDK subsystem with 8 drives)
 - (201.100.*), (203.100.*)
 - (205.100.*), (207.100.*)
Bucket Abstraction

Key Distribution

Cluster Expansion

Rebalance

Standard S3 Operations (Get/Put etc.)
DSS GET Performance

Setup:

- Client - 16x Dell PowerEdge R6525, 2 x DGX A100
- DSS S3 Server
 - 10x Dell PowerEdge R7525 Gen4 servers
 - Dual socket AMD EPYC 7742 64-Core
 - 1TB physical memory
 - 4x Mellanox Dual port 100/200Gb (ConnectX-6)
- SSD - 16x PM1733 4TB Gen4 NVMe SSD per DSS S3 server
- Total data set generated during test ~400TB
- Top chart is just DSS backend performance across 10 node, no S3 involved
- Tool used home grown dss test cli
- Bottom one with DSS optimized Minio
- Tool used standard S3-benchmark
AI Benchmarking Tool

- Benchmarking various storage solution based on NFS, S3 at AI training level
- Platform where developers can add their ML framework, custom data set, training method, models and storage backend
- Demo is showing a custom training with a custom data set that is only capturing data load time and BW from storage servers on NFS/S3
DSS S3 vs Standard NFS

Setup:

• Client – 12x Dell PowerEdge 740xd
• DSS S3 Server
 • 6x Dell PowerEdge R7525
 • AMD EPYC 7742 64-Core
 • Mellanox Dual port 200g (ConnectX-6)
• NFS server –
 • 6x Dell PowerEdge R6525
 • AMD EPYC 7742 64-Core
 • Mellanox Dual port 200g (ConnectX-6)
• SSD - PM1733 4TB NVMe SSD
IO flow during S3 GET request

DSS MINIO

- Select EC set
- Get Object Info
- Get object on the EC set
- Read all EC Chunks
- EC Decode
- Copy to http response writer

DSS Host

- KV Get
- Read EC Chunk 1
- Read 1 MB KV chunks
- KV Get
- Read object Meta
- Driver GET ioctl
- DSS KV Get API
- DSS KV Get

DSS Target

- Kernel Driver RDMA GET over NVMF
- SPDK NVMF RDMA configured NQNs

DSS stack IO path is one-copy

Copy to http response writer

Copy of data blocks

Zero copy when no disk failure
IO flow during S3 GET request for next Gen DSS

End Client

S3 GET Req → **DSS MINIO**

- Select EC set
- Read Object Info
- Get Object on the EC set
- Read all EC Chunks
- Read EC Chunk N Read

DSS MINIO

KV.RDD_Get()

DSS Host

- DSS KV Get API
- Driver GET ioctl
- Driver GET ioctl
- Driver GET ioctl

DSS Target

SPDK NVMF RDMA configured NQNs

GET Payload is directly RDMA into end-client memory bypassing DSS Minio server stack

Response is only success/failure, no payload back
DSS Availability

Open Source Announcement
- https://github.com/OpenMPDK/DSS
 - https://github.com/OpenMPDK/dss-sdk
 - https://github.com/OpenMPDK/dss-ansible
 - https://github.com/OpenMPDK/dss-minio
 - https://github.com/OpenMPDK/dss-ecosystem

Complete Ecosystem
- AI Benchmarking Framework supporting user preferred training and models
- Client Wrappers supporting Pytorch and Tensorflow
- Host and Target Stack
Thank You
(som.roy@samsung.com)
Please take a moment to rate this session.

Your feedback is important to us.