

VIRTUAL EVENT • MAY 24-25, 2022

Scaling NVDIMM-N Architecture for System Acceleration in DDR5 and CXL[™] - Enabled Systems

Presented by; Arthur Sainio and Pekon Gupta

Need for Persistent Memory

Persistence

- System downtimes are costly but inevitable.
- To limit the blast radius, impacted services, VM or a downed server should be rebooted in the same state as it was earlier.
- Intermediate transaction states, configurations and metadata are saved in Persistent Memory even before transactions are fully committed.
- To identify the cause of failure, error logging until the latest event and security logging during a malicious hack are required.
- Persistence preserves event logs across power-cycles.

Memory (low latency)

Layer 3 switch

er 3 switch

High latency may directly impact revenue or customer experience.

Cisco 3620

backborie

- Missed SLA like denial of transaction in credit card business means losing the transaction to your competitor or allowing fraudulent transaction.
- In High Frequency trading, A broker could lose millions, if their electronic trading platform is just few milliseconds behind the competition.
- Amazon found every 100ms of latency cost them 1% in sales.
- Google found an extra 0.5 seconds in search page generation time dropped traffic by 20%.

Source; The GigaSpaces Technologies Blog, Insights into In-Memory Computing and Real-time Analytics

Persistent Memory Solution Options

COMPUTATIONAL STORAGE

	Volatile Memory with Backup Power (NVDIMM-N)	Non-Volatile Media Based (NVDIMM-P)
Architecture	power lost? NAND Power lost? NAND Power lost? Power lost?	MRAM Re- RAM FRAM PCM* NRAM Media controller J J V V V V V V V V V V V V V V V V V
Examples	 NVDIMM-N CXL[™] NV-XMM implementations (Non-Volatile CXL Memory Modules) 	 Intel Optane[™] PMem NVDIMM-P based implementations Different types of PM media
Features	 Low latency (RTT < 50ns) (Incoming traffic hits DRAM) Granular Byte level addressing. High reliability (Flash used only during backup) Data retention for data at rest equivalent to NAND media. X Hold up power required 	 X Higher Latency ✓ Granular Byte level addressing X Reliability (Limited by endurance of media) ✓ Data retention across power-cycles ✓ High density memory expansion

2007 2008 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

- Practical industry solution to dramatically increase system performance
 - $\checkmark\,$ Provides direct access and removes IO and all the overhead
 - $\checkmark\,$ Allows critical databases to be built in memory
 - $\checkmark\,$ A memcached structure is faster than the any solid-state solution
 - ✓ Uses off-the-shelf DRAM and Flash components
 - $\checkmark\,$ NVDIMM solutions are widely adopted by flash storage array vendors.

Use Cases - NVDIMMs in Storage

As read cache

- The NVDIMM solution is low in complexity from a software and hardware implementation perspective.
- NVDIMMs cache hot data and metadata, thereby enabling performance with latencies in the sub-80ns range, almost 100x faster less than high end SSD available.

For Fault Tolerance

- Mirroring Data to and from NVDIMMs via PCIe NTB (Non-Transparent Bridging)
- NVDIMMs provide greater than 4X Write IOP latency improvement by reducing the time transient data must be replicated to the peer.

Energy Backed Interface

COMPUTATIONAL STORAGE

NVDIMM Cookbook – Still Valid for DDR5 NVDIMM

The ACPI NVDIMM Framework SNIA NVM Programming Model

NVDIMM Migration to DDR5

Technology	DDR3	DDR4	DDR5	DDR5 Advantages
Speed	6.4 to 1.49 Mbps data rate	1.6 to 3.2Gbps data rate	4.8 to 6.4Gbps data rate	Higher Bandwidth. up to 6400 MHz
IO Voltage	1.5V	1.2V	1.1V	Lower Power
Power Management	On Moth	er board	On DIMM (PMIC)	Better power efficiency and scalability
Channel Architecture	72bit data channel (64 data + 8 ECC) 2 channels per DIMM	72bit data channel (64 data + 8 ECC) 1 channel per DIMM	40bit data channel (32 data + 8 ECC) 2 channels per DIMM	Higher memory efficiency, lower latency
Burst Length	4	8	16	Higher memory efficiency
Max. die density	8Gb	16Gb	32Gb	Higher capacity NVDIMMs
NVDIMM Types	SODIMM, RDIMM	RDIMM	LRDIMM, RDIMM	Same form factor

DDR5 NVDIMM Architecture

eature	Description
lemory	• DDR5-4800 32GB / 64GB
rotocol	JEDEC Compliant DDR5
eatures	 Throughput of 63.0 GB/s Latency ~20ns AES 256 bit Encryption
argeted Use Cases	 All Flash Arrays, Storage Servers, HPC, Al Training Servers Needed for very low latency tiering, caching, write buffering, metadata storage, checkpointing Needed for Al/ML algorithm processing
	processing

CXL 2.0 Support for Persistent Memory

PCIe enumeration

- NFIT not used for CXL
- Leverage PCIe framework
- MMIO registers
 - Mailbox interface, etc.
- Command Interface
- Minor changes to external specs like ACPI/UEFI

Source; SNIA PM Summit Andy Rudoff April 2021

CXL 2.0 Support for Persistent Memory

- Operate with standard CXL type 3 Linux and Windows memory driver for enumeration, configuration, I/O, and management.
- DRAM equivalent latency and endurance; Endurance limited only by Save/Restore cycles to NV
- Architecture supports multiple form factors
- End-to-End data protection from CXL host through Memory Buffer, NVC, and on all storage devices.
- NV data at rest must be encrypted.
- Support on module (device managed) or off module (host managed) NV Save energy source.

CXL[™]-based Persistent Memory - NV-XMM

CXL Type 3 PM (NV-XMM) Design Goals:

- On board power source for back-up power
- Self managed back-up and restore
- Standard Programming model for CXL Type-3 devices
- DRAM equivalent latency and endurance;
- Unlimited Endurance as active data writes directly go to DRAM
- Encrypting data during back-up.

CXL Type 3 PM (NV-XMM)

- Memory Buffer to be used with RCD.
- Infrequent Save/Restore cycles (< 10 per day)</p>
- Form Factors
 - E3.S / AIC / E1.S

CXL[™] NV-XMM Architecture

Feature	Description			
Memory	• DDR5			
Protocol	• CXL 2.0			
Form Factors	• E3.S 2T, AIC			
Features	 Unlimited endurance Latency <100ns Secure backup 			
Targeted Use Cases	 All Flash Arrays, Storage Servers, HPC, AI Training Servers For very low latency tiering, caching, write buffering, metadata storage, checkpointing For AI/ML algorithm processing New applications 			

CXL[™] Adds Capacity, Bandwidth and Persistent Memory

Current Gen Systems DDR4 NVDIMM-N Next Gen Systems DDR5 NVDIMM-N and CXL NV-XMM

Key Takeaways

- NVDIMM-N architecture transition from DDR4 to DDR5 without significant changes.
- Any latency-sensitive data that is continuously changing can benefit from NVDIMM and NV-XMM.
- DDR5 NVDMM-N is near-term and will fill a gap for high performance, low latency persistent memory applications.
- CXL NV-XMM will follow and also be used for low latency-sensitive applications.
- CXL NV-XMM will coexist with DDR5 NVDIMM-N
- CXL NV-XMM will open up new use cases for higher capacity and composability

Please take a moment to rate this session.

Your feedback is important to us.