

Computational Storage for Storage

Andy Walls IBM Fellow and CTO FlashSystems

What is Computational Storage for Storage?

- Think of the Storage Software as an "Application"
- Runs on X86 Servers with failover capability
- Many functions
 - Replication
 - Data Reduction
 - Monitoring
 - Replication and Snapshots

- Parts of this storage application offloaded onto the SSD (FCM)
- Compression one example
- Work distributed among many FCMs

FCM3

- 2.5" dual ported U.2 NVMe form factor
- Gen 4 PCIE
- Micron QLC NAND Flash
- LPT Paging to reduce DRAM Cost!
- Encryption and FIPs 140-2
- FCM Does inline Compression
 - Transparent to System
- High Effective capacity also provides thin provisioning
- Cooperates with RAID Stack
- Hinting Architecture
- Smart Data Placement

Capacities of FCM

4.8TBu 22TBe

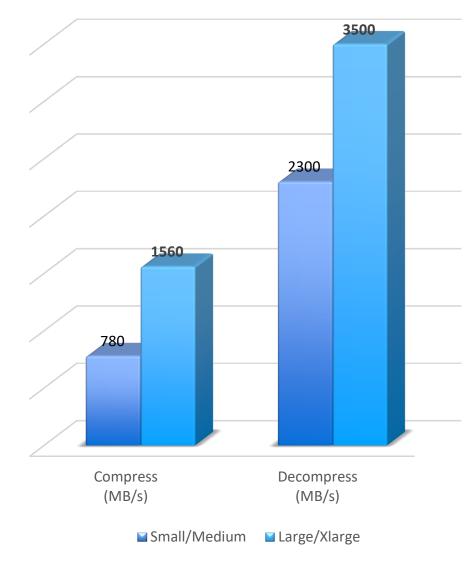
9.6TBu 29TBe

19.2TBu 58TBe

38.4TBu 116TBe

FCM has been extremely successful

- Has twice the endurance as standard NVMe drives.
 (2 DWPD)
- Most systems use FCMs
- Tested to over 1M Hours
- 38TB is densest with hundreds of PB shipped


Inline, At Speed, Hardware Compression

- The FCM data compression/decompression algorithm is a Modified Dynamic GZIP algorithm
- FCM Compresses and then compacts the data into the write stream
- Storage software needs NO mapping metadata and no Compression software.
- Storage system simply destages from cache as per norm.
 IO Path does not change at all.
- Decompression done in line with hardly any extra latency
- Data is decompressed along side compression and checked bit by bit. Never any corruption!
- Storage System manages out of space and capacity management out of band by querying the FCMs

A great example of Computational Storage Offloading a Storage Array

Compressor Bandwidth

IBM FlashSystem Family 2022

Entry Enterprise

Midrange Enterprise

FlashSystem 7300

High-End Enterprise

Hybrid Cloud

FlashSystem 5200

5200 through 9500 use IBM Differentiated Flash! The FCM!

IBM Spectrum Virtualize

Storage function, scalability, interoperability, cloud integration and automation

Computational Storage Motivation

Read throughput can be sustained at up to 100GB/sec in a FS 9500

FAST – BUT, clogs up switches, CPUs

• If Servers and System can process it that fast

There is 168GB/sec of NVMe
BW inside 9500

There is about 768GB/sec BW off the NAND Flash! (2:1) Compression

That BW provides tremendous potential for additional analysis

Computational Storage for Storage

- FCM accelerates the Storage Application
- Compression was first step
- Useful hints about the data to optimize performance
- RAID offload and acceleration
- Implementing very innovative assists that accelerate key storage services
- The FCM is ideal for getting key information about data
 - Real Time changes in entropy at many levels
 - How data has changed and is changing
 - Heat of access
- Filtering, searching, scanning to assist other parts of stack

Making use of this information

- FCM can help to summarize data of all types to assist in analytics and machine learning
 - The lowest level of summarization helps to reduce bandwidth and data storage at higher parts of the system
- Tiering of all kinds can be facilitated
- Support assistance and AI can be facilitated
- Using extra bandwidth signals useful to Malware detection, can be generated.

Search and filtering example

- It is useful to scan log files to look for various strings
- FCMs can implement a background scan process using that extra bandwidth looking for those strings
- APIs needed for host file system or database to detail which portions of volumes need scanning.
 - Work being done in standards bodies to define these APIs

Please take a moment to rate this session.

Your feedback is important to us.