Deduplication, Compression and Pattern-Based Testing for All Flash Storage Arrays

Peter Murray - Load DynamiX
Leah Schoeb - Evaluator Group
Advanced AFAs are a Different Animal

- Flash behavior is unique
- AFAs have a different performance curve
- Advanced AFAs do not merely store data
 - Most perform extensive metadata processing
 - Deduplication
 - Compression
 - Elimination of repeating character strings
- These new arrays require a new performance testing methodology
Traditional Disk Performance Curve

- **Ramp up**
- **Steady State**
Flash Performance Variations

SSD Performance States - Normalized IOPS

Pre-conditioning

Write Cliff

Transition

Steady State (desirable test range)

(SNIA SSSI Specification)
Methodology In Action

IOPS Comparison for 3 Groups of Data Patterns & R/W Ratios

Which is best? Depends on your workload.

IOPS

Read/Write Ratios

Vendor A
Vendor B

20% / 80% 50% / 50% 80% / 20%

20% / 80% 50% / 50% 80% / 20%

20% / 80% 50% / 50% 80% / 20%
Implementing a Methodology to Achieve Realistic Workload Emulations

- Methodology is a means to an end
 - Effective application workload modeling
 - Benchmarks

- Validation takes SSS TWG methodology to a new level
 - Testing that emulates application workloads
 - Workload combinations that emulate the I/O blender
 - Requires complex testing capabilities
 - Requires correlated results
New Approach to Validating AFAs

1. Workload Characterization

2. Workload Modeling

3. Workload Emulation

4. Performance Analytics
Primary Methodology Elements
For Testing an AFA
Deduplication

- Approaches vary by manufacturer
- Dedupe block size
 - Larger block size speeds processing
 - Smaller size can dedupe better, but requires more processing
- Ingest processing, post processing or both
- Deduplication in the presence of data skew
Compression

- Vendor implementations vary
 - Not as prevalent yet as deduplication
 - Increasingly being supported by vendors
- Performed during ingest
- Compression block sizes may increase overall compressibility
 - Vendor dependent
Eliminating Repeating Character Strings

- Repeating characters stored as metadata
 - Metadata identifies:
 - Character
 - Number of repetitions
- Performed during ingest
Methodology Overview
Methodology Elements

- Pre-conditioning
- Creating a realistic data set
- Writing to create an application data set on array
- Writing to exercise the array emulating an appropriate workload
- Other tests to emulate realistic, simultaneous writing and reading
Pre-Conditioning

- Involves breaking in entire flash array
 - Writing to every cell to achieve steady state
 - Helps to ensure garbage collection during main test cycles

- Goal: create a realistic data set
 - Dedupeable and non-dedupeable blocks
 - Compressible and non-compressible blocks
 - Combined using varying block sizes
 - Written to emulate hot spots and drift
 - Written with appropriate dedupe/compression ratios
Write Performance Tests

- Exercising array like an application does
 - Writing at high load to find limits
 - Writing using a data stream relevant to the data set
 - Writing to emulate long-term application access

- Goal: Exercising the array realistically
 - Using a variation of the pre-conditioning data set
 - Writing with same levels of data reduction
 - Using multiple block sizes
 - Including hot spots and drift to emulate temporality
Read/Write Workload Tests Scenarios

- Tests that write and read simultaneously
 - All-write tests do not exercise an array the way an operating application does
 - Reading must be combined with writing for realism
 - Tests using all-write data patterns, but reading also
 - Run at expected application load
- “What if” testing to determine performance limits
 - Magnifying the load to test future expected loads
Methodology Components
Block Size

- Block sizes vary by application and operation
 - 25K-40K average block size is common
 - But, no application uses uniform block sizes
 - Sizes vary according to operations
- OLTP transactions typically small
- Analytics, reporting typically larger
Block Size (continued)

- AFA methodology should reflect real access
 - Single application
 - I/O Blender (multiple, usually virtualized, applications)
 - Either model requires multiple block sizes
- Should reflect application/blender access distribution
 - E.g. 3% 4K, 15% 8K, 20% 16K, 52% 32K, 10% 64K
Hot Spots / Hot Bands and Drift

- Application access is not uniformly random
 - Hot spots are storage locations accessed more frequently than others
 - Hot spot regions drift over time
 - E.g. Index file growth as transactions are processed

- Hot Spot examples:
 - Index Files
 - Temp Files
 - Logs
 - Journals
Hot Spots/Bands and Drift (continued)

- Hot spot emulation example:
 - 1% of all access regions receive 35% of the IOs
 - 1.5% of all access regions receive 15% of the IOs
 - 2.5% of all access regions receive 15% of the IOs
 - 5% of all access regions receive 15% of the IOs
 - 7% of all access regions receive 10% of the IOs
 - 6% of all access regions receive 5% of the IOs
 - 7% of all access regions receive 3% of the IOs
 - 5% of all access regions receive 1% of the IOs
 - 65% of all access regions receive 1% of the IOs
Access Patterns

- Tests must reflect realistic access patterns
 - Should emulate real applications
 - Should avoid uniform random write distribution
 - Should use multiple block sizes
 - Should avoid unrealistic access patterns that skew towards systems that maintain larger amounts of reserve flash memory

- Should include testing in the presence of:
 - Backups
 - Snapshots
 - Replication
Complex Data Patterns

- Complex data patterns model workloads

- Pattern types:
 - Unique
 - Repeating
 - Uncompressible
 - Compressible

- Combined to represent data content representing:
 - Data set at rest after pre-conditioning
 - Data patterns that emulate traffic during operation
Data Content

- Data content patterns
 - Created before testing
- Data content streams
 - Written during testing
- Repeating and non-repeating patterns
 - Random
 - Compressible
- Varying pattern lengths

Repeating non-compressible pattern

Repeating non-compressible pattern

Repeating non-compressible pattern
Thread Count and Queue Depth

- Both should increase during testing
- Should find max throughput for each:
 - Thread count (workers)
 - Queue depth (outstanding I/Os per worker)
- Should find max IOPs for each:
 - Thread count
 - Queue depth
 - Combination of threads and queue depth
- Should increase thread count/queue depths to find max array performance
New SNIA Technical Working Group

Solid State Storage System Technical Working Group
(s4twg.snia.org)
(s4twg@snia.org)
Solid State Storage System (S4) TWG

- Address the unique performance behavior of Solid State Storage Systems (S4)
- Measure performance of inline-advanced features
- Measure performance of enterprise arrays vs. devices
- System wide housekeeping vs device level
- Caching and DRAM tiering
Charter

- Identify, develop, and coordinate standards to enable accurate performance measurement for solid state storage systems
- Produce a comprehensive set of specifications and drive consistency of measurement guidelines and messages related to solid state storage systems
- Document system-level requirements and share these with other performance standards organizations
Program of Work

- The TWG will develop a specification for measuring the performance of solid state systems.

- The TWG will develop a specification focused on solid state storage systems that support inline advanced storage features that directly impact performance and the long term behavior of the array.

- **Note:** This will build upon process methodology developed by the SSS TWG.
Summary
Summary

- All-Flash Arrays are unlike disk-based arrays
- Data reduction dramatically changes performance characteristics
- Tests must include rich data content to be valid
- Tests must model real-world access patterns
Summary

- Tiered arrays are unlike all-flash arrays
 - This methodology valid for arrays that implement data reduction, but may not be appropriate for tiered arrays
 - A second methodology may be required, especially for tiered arrays that do implement data reduction

- Testing must be fair, unbiased and repeatable
 - “One size fits all” may not be fair to tiered arrays
References