

Using Reinforcement Learning to Optimize Storage Decisions

Ravi Khadiwala Cleversafe

Topics

- What is Reinforcement Learning?
- Exploration vs. Exploitation
 - The Multi-armed Bandit
 - Optimizing read locations
- Solution Strategies
 - Thompson Sampling
- Practical applications and modifying problem constraints

Reinforcement Learning (RL)

- Consists of an Agent that interacts with an Environment and optimizes overall Reward
 - Agent collects information about the environment through interaction
- Standard applications include
 - A/B testing
 - Resource allocation

Uses in Data Storage

- Storage systems are dynamic environments
 one size fit all parameters are difficult
- Situations that require adaptive intelligence:
 - Choosing an optimal set of nodes to read from
 - Scheduling housekeeping (potentially distributed) operations
 - Optimizing access to a shared resource in a decentralized manner

Formulating a RL problem

- Environment is usually based on an Markov Decision Problem (MDP) that isn't perfectly known by the Agent
 - S Set of states
 - A Set of actions
 - Rules for transitioning between states
 - Rules associating transitions with rewards
- One important addition: Rules describing what the agent observes

Formulating a RL problem

Agent seeks to maximize reward

- Chooses action from A
- Observes from environment according to rule
- Repeats

The Multi-armed Bandit

- By far the most studied problem in reinforcement learning
- N slot machines
 - Each with a unique, *fixed*, payout distribution
 - Each round you try one of the slot machines
 - Try to maximize your money over time!

7

Multi-armed Bandit formulation

- \square B = {B₁, B₂,... B_n}, set of real distributions
- Equivalent to a one state MDP where
 - Action set: pulling levers 1..n
 - Reward: A draw from the associated distribution

Example: Reading with choices

Simple scenario

- Must read from 1 of of n nodes
- Each node has a different latency distribution
- Try to minimize user latency (without incurring wasted bandwidth)

Mapping

- Round: Each user read
- Action: Choice of node
- Reward: User latency

Evaluating Strategies

A strategy is a scheme for picking actions/nodes

Powerful evaluation criteria: regret

 \Box r^{t} is the reward observed at round t

r^{*} is the optimal reward

regret at round T is

$$T \cdot r^* - \sum_{t=0}^{t} r^t$$
A good solution has average regret 0 as $T \to \infty$

 \mathbf{T}

Naïve Solutions

- Try all nodes once, then always pick fastest
 May not converge to optimal node
- **□** ε-greedy
 - Choose fastest with probability (1-ε) and choose randomly with probability ε
 - Will eventually learn optimal node
 - Average regret never goes to 0

11

Probability Matching

Intuitively satisfying strategy

The further away an arm is from the current best, the less likely we are to explore it

- Thompson Sampling
 - AKA Bayesian Bandits
 - Approximately optimal
 - As confidence in arms increases, exploration decreases

Thompson Sampling

- Build a posterior distribution for each node based on observations
- Each round sample each distribution and choose the node that produced the 'best' sample
- Theoretically justified probability matching
- Advantages
 - Converges to optimal node
 - Easy to adapt to problem modifications

Beta Distribution

 \square The beta distribution has two parameters, α,β

- $\Box \alpha$ = number of successes
- $\Box \beta$ = number of failures
- $\Box \alpha / (\alpha + \beta) = expected value$

Application 1: Read Ranking

- Read from best k of n nodes
- Performance of nodes changes
 - Over time
 - Over access
- Optimize user latency
- Tradeoff with throughput

Constraint: Multiple selections per round

- Fairly easy to handle
 - Choose k best samples at each round
 - Consider a choice a 'win' if it is faster than the kth slowest node historically
- Reduces to the one selection case

Application 1: Read Ranking

2014 Storage Developer Conference. © Cleversafe, Inc. All Rights Reserved.

17

Constraint: Drifting rewards

Relaxing the constraint of fixed distributions yields the restless bandit problem

- Disks degrade
- Network problems arise
- Resource contention

Dynamic Thompson Sampling

- **Simply limit** $\alpha + \beta$
 - Limits total confidence in a distribution
- Simple to implement
- Practically very effective
 - Often out performs more complicated solutions

Constraint: Extra selections

- k selections not a tight requirement
- Make tradeoff between latency and throughput
- Compute predicted latency cost of a non-optimal selection
 - Send an extra read if it's worth paying the throughput cost

Application 2: Scheduling Housekeeping

- Rebuilding repairing lost data
- Any node can discover that another node is missing data
 - **Coordinator**
 - **Participants**
 - **Recipient**

Rebuilding Architecture

- Expensive in an erasure coded storage system
 - Network bandwidth
 - CPU utilization
 - Disk utilization (reads + writes)
- Decentralized activity
 - Hard to know effect on global system

Formulating the scheduling problem

- Actions: A discrete set of rates the coordinator can rebuild at
- Rewards: A weighted combination of rebuild speed and observed throughput rate
 - Weight value of rebuild heavier the more unhealthy we perceive to be

Rebuild Rate v. Client I/O Rate

SD⁽⁴⁾

24

Aside: Parameter Tuning

- Hyper parameters?
- Tuning hyper parameters vs. parameters
 - Generality improves
 - Avoids overfitting
- Testing

Application 3: Decentralized resource management

- Many actors contend for a shared resource
 - Communication between actors may be infeasible
- May be limitations on resource's knowledge as well

Goore Game

- N voters, 1 Referee
 - Voters cannot communicate
- Each round players vote y/n
- Referee has a unimodal preference, f
 - There is some unique ratio of yes to no that maximizes f
- Goal: Voters converge on optimal ratio

- Thompson Sampling will eventually converge to ideal ratio
- Models many problems of imperfect information in distributed systems
 - Self organized performance optimized load balancing

Overview of RL

Advantages

- Planning for the general case is hard
- Handle unforeseen scenarios gracefully
- Good in systems with imperfect information
- Relatively simple to implement

Disadvantages

Can be unpredictable

Future Research Areas

More complex models of bandit rewards Contextual Bandits

Generalizing to do RL on MDPs

Q & A

2014 Storage Developer Conference. © Cleversafe, Inc. All Rights Reserved.

31