

Software Defined Storage:Changing the Rules for Storage Architects

Ric Wheeler Red Hat

Overview

- What is Software Defined Storage?
- What Changes for Storage Architects?
- Why Open Source Matters for SDS
- Impact on Users

What is Software Defined Storage?

- Another silly marketing term?
 - What storage does not have software in it?
 - Technology?
 - Deployment model?
- One of the more popular platforms for "Software Defined Storage"
 - Separates the hardware from the software
 - Significantly lower costs

History of SDS

- Fairly new term
 - Goes back a couple of years
 - ScaleIO & EMC ViPR both use this term
- Focus of this talk is on Linux based SDS
 - Gluster's scale out (primarily) file storage
 - Ceph scale out storage (block, object and file)
 - Linux based appliances with samba, NFS, iSCSI target, etc

A Variety of SDS Systems

- EMC Centera is a similar system
 - Linux base
 - Proprietary user space file system
 - Vendor specified & selected hardware system
- EMC ViPR is an SDS system that runs on Linux platforms
- Lots of non-open source code in all systems
 - Firmware in components like drives, HBA's, etc

Where to Draw the Software/Hardware Line?

- Users can supply only the hardware
 - SDS architect controls operating system and above
 - Maximize the architect's control over the platform
 - Can insure better stability and performance
- Users supply the hardware and their own OS
 - Maybe just certify some versions of some OS'es?
 - SDS is just another application
 - Maximum deployment flexibility, minimum control for architects

Some Things Get Harder

- Storage architects lose control over supported hardware configurations
 - Users select drives, HBA's and server platforms
 - Users often do direct maintenance & software updates
- Servers can run other services
 - Co-locate virtual client on server with server software
 - Can cause irregular performance
- Management applications need to help users carry the extra burden

Some Things Get Easier

- Architects get to focus on the SDS application layer itself
 - No longer need to spend our resources on drivers or operating system stack design
 - Linux supports a wide choice of high performance, hardened software components
- Storage system design is open to a broader range of engineers
 - Lots of SDS code is user space
 - Easy enough to make a very reasonable storage array without having to write kernel level code

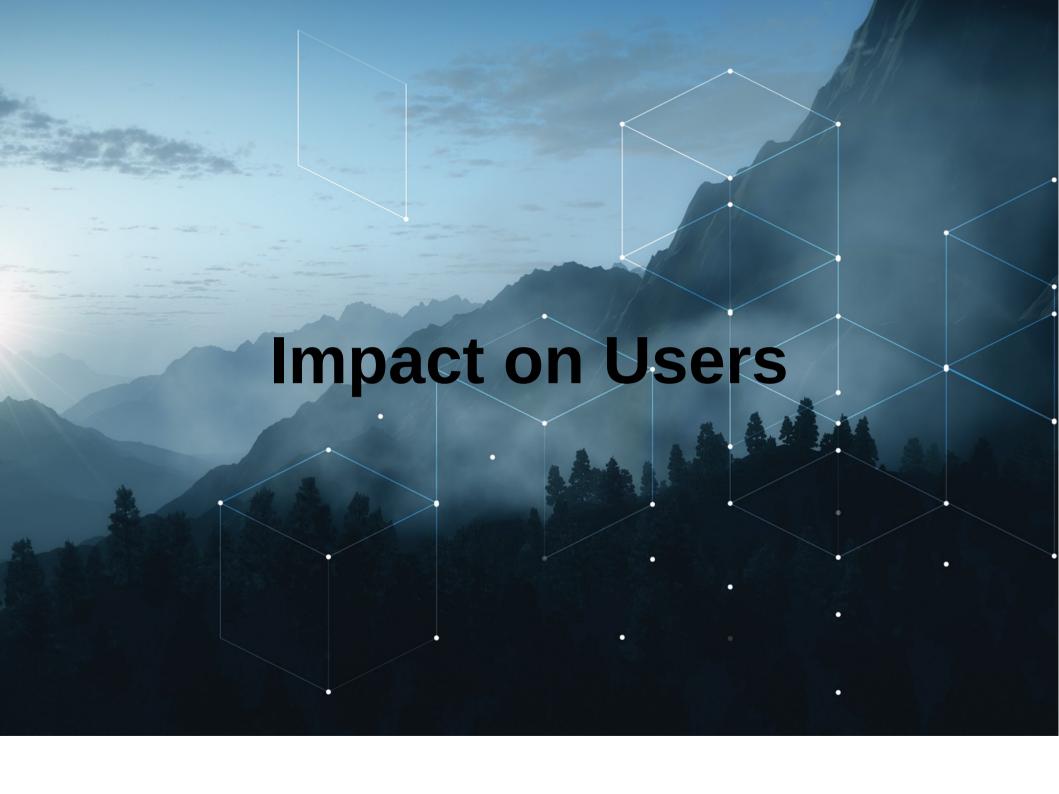
Good Fit for Openstack

- Openstack and SDS go well together
 - Lower cost is a goal for both
 - Deployment model both favor commodity components
 - "Agile" dev ops friendly management
- Performance and reliability goals not as critical
 - Reliability achieved by scale out design
 - Some environments have a looser consistency model

Linux and Open Source Ecosystem

- Enormous community of developers
 - Thousands of developers contribute to each kernel
 - Linux is a strategic platform for hardware vendors
 - Wide variety of supported hardware to choose from
- Same components and stack used widely
 - Dominance from embedded systems like Android up to super computing
 - Versions of same stack used with enterprise storage
- Allows storage designers (mostly!) to focus on the storage application itself

When Things Break


- Multiple vendors can provide technical support
 - Red Hat, SUSE, Canonical, Oracle, etc.
 - Embedded Linux vendors
- Public support
 - Mailing lists like linux-scsi, linux-ext4, xfs, ...
 - IRC channels
 - Conferences and other public forums
- Still best practice to keep on staff kernel engineering
 - Code is open and available
 - Can investigate, tune and fix on your own terms

Linux Community Focus on Performance

- Multiqueue work
 - Multiqueue block layer work by Jens Axboe
 - Multiqueue SCSI work by Christoph Hellwig
 - See Multiqueue Block talk on Wednesday
- Support for advanced fabrics
 - See Enhancements to the iSER iSCSI Protocol or NFS over 40Gbps iWARP RDMA on Wednesday
 - Multiple talks this week
- Active work on caching, tiered storage, SMR drives and persistent memory

Storage Users Become Partners

- Unlike traditional, enterprise systems, storage admins now are responsible for
 - Software updates
 - Servicing their storage servers and drives
 - Selection of the hardware itself
- Performance tuning can be painful
 - All SSD's are not normally an option
 - SDS vendor provides guidance, but ultimate choice and tuning hits the end administrator

Life Cycle Operations

- Populating new storage systems with data
 - Bring data in from traditional enterprise storage?
 - Load with new, user generated data?
- Migration off of old, end of lease hardware to new systems
 - Open source and open standards help prevent lock in of data in one system
 - Can be a slow and painful process

Red Hat's Software Defined Storage Systems

- Red Hat Storage Ceph and Gluster
 - Scale out SDS systems
- Red Hat Enterprise Linux based servers
 - Single node NFS and/or samba servers
 - Active/passive clusters with NFS and/or samba
- Red Hat Enterprise Linux as a base for third party SDS software

Resources

- Multiple conferences each year
 - Linux Foundation Vault and LSF/MM this coming March in Boston
 - SNIA events like SDC!
 - USENIX FAST and other forums
- Mailing lists
 - Linux-scsi, xfs, linux-ext4, etc
 - IRC channels

