

LustreFS and its ongoing Evolution for High Performance Computing and Data Analysis Solutions

Roger Goff Senior Product Manager DataDirect Networks, Inc.

What is Lustre?

- Parallel/shared file system for clusters
 - Aggregates many systems into one file system
 - Hugely scalable 100s of GB/s throughput, 10s of thousands of native clients Scales I/O throughput and capacity
- Widely adopted in HPC community
- Open source, community driven development
- Supports RDMA over high speed low latency interconnects and Ethernet
- Runs on commodity storage and purpose built HPC storage platforms
 - Abstracts hardware view of storage from software

Highly available

Lustre Node Types

- Management Servers (MGS)
- Meta-Data Servers (MDS)
- Object Storage Servers (OSS)
- Clients
- LNET Routers

Lustre MGS

- ManaGement Server
- Server node which manages cluster configuration database

- All clients, OSS and MDS need to know how to contact the MGS
- MGS provides all other components with information about the Lustre file system(s) it manages
- MGS can be separated from or co-located with MDS

Lustre MDS

Meta Data Server

- Manages the names and directories in the Lustre file system
- Stores metadata (such as filenames, directories, permissions and file layout) on a MetaData Target (MDT)
- Usually MDSs are configured in an active/passive failover pair

Lustre OSS

- Object Storage Server
- Provides file I/O service, and network request handling for one or more Object Storage Target (OST)
- Can be configured for high availability
- Storage agnostic

2014 Storage

Lustre Clients

- POSIX compliant file system access layer
- Has Logical Object Volume (LOV) layer that manages file striping across multiple OSTs.
- Has client layers for each of the servers e.g. Object Storage Client (OSC) to interact with OSS and Metadata Client (MDC) to interact with MDS

Lustre Client Metadata Server Linux Virtual File System Lustre Client File System File open request Logical Object Volume (LOV) OSC 1 MDC OSC 3 File metadata File X (Object J, Object K) MDT (3 Write (Object K) OST 1 OST 2 OST 3 **Object Storage Servers**

Lustre File Striping

- The ability to stripe data across multiple OSTs leads to high performance
- Stripes used to improve performance when the desired aggregate bandwidth to a single file exceeds the bandwidth of a single OST
- stripe_count and stripe_size can be set per file

Lustre Networking (LNET)

- LNET Routers provide simultaneous availability of multiple network types with routing between them.
- Support for many commonly-used network types such as InfiniBand and TCP/IP
- RDMA when supported by underlying networks
- High availability and recovery features enabling transparent recovery in conjunction with failover servers
- LNET can use bonded networks
- Supported Networks:
 - InfiniBand, TCP, Cray: Seastar, Myrinet: MX, RapidArray, Quadrics: Elan

LNET Routers in Lustre Solutions

10

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

SD @

Lustre File Systems

- Public Sector Lustre Systems:
 - Lawrence Livermore National Lab 64PB, 1.5TB/s, 96,000 clients
 - Texas Advanced Computing Center 20PB, 250+GB/s
 - □ Oakridge "Spider" 10PB, 240GB/s, 26,000 clients
 - Environmental Molecular Science Lab @ PNNL 75GB/s
- Commercial Lustre Systems:
 - Energy Company (unnamed) 10.5PB, 200GB/s
 - Energy Company (unnamed) 270GB/s
 - Wellcome Trust Sanger Institute (life sciences) 22.5PB, 20GB/s
 - ANU (Bureau of Meteorology + climate science labs) 6PB, 152GB/s

Lustre Small File Performance Improvement

- Array Cache and Flash Cache Acceleration
- Lustre Distributed Namespace (DNE)
- Lustre Data on Metadata

Cache Optimization DDN ReACT Intelligent Cache Management

- Caches unaligned IO
- Allows full stripe writes pass directly to disk
 Faster, safer data

Figure 5 – Optimizing Cache Utilization with ReACT

Flash Cache Acceleration Re-read

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Flash Cache Acceleration

DDN Storage Fusion Xcelerator™ (SFX) - Instant Commit

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Flash Cache Acceleration

DDN Storage Fusion Xcelerator[™] (SFX) - Context Commit

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Lustre Distributed NamespacE (DNE)

- DNE allows the Lustre namespace to be divided across multiple metadata servers
- Enables the size of the namespace and metadata throughput to be scaled with the number of servers
- An administrator can allocate specific metadata resources for different sub-trees within the namespace

Lustre Data on Metadata

- Aims to improve small file performance by allowing the data for small files to be placed only on the MDT
- **3** Phase Implementation
 - 1. Basic DOM mechanism
 - 2. Auto migration when file becomes too large
 - 3. Performance optimizations
 - readahead for readdir, stat
 - First write detection so files are only created on MDT when appropriate
 - Reserve OST objects in advance even for small files

Reduced RPCs with Data on Metadata

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Estimated Performance Improvement with Data on Metadata

part of operation	server	time for operation, usec	Data-on-MDT goal	
Write at the end of file				
open + lock	MDT	1296 + N	1296 + N	
glimpse	OST	392 + N	0	
IO lock	OST	1737 + N	0	
ю	OST	1760 + N	1760 + N	
		5185 + 4N	3056 + 2N	
Read small file				
open + lock	MDT	844 + N	844 + IO read + N	
glimpse	OST	333 + N	0	
IO lock	OST	726 + N	0	
IO read	OST	1392 + N	0	
		3295 + 4N	~ 1200 + N	
Stat of existent file with data				
getattr + lock	MDT	954 + N	954 + N	
glimpse	OST	654 + N	0	
		1608 + 2N	954 + N	

High Performance Data Analysis (HPDA)

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

High Performance Data Analysis (HPDA)

HPC workloads create and keep LOTS of data...

Hadoop uses local, direct-attached storage

But, HPC nodes are diskless

 PAIN POINT→ storage efficiency and management complexity

Recent IDC research uncovered:

- ~67% of HPC sites are running Hadoop workloads on their HPC systems
- Hadoop workloads consume about 30% of their computing cycles

+18% CAGR for HPDA storage, twice HPC storage growth

* Some names and brands may be claimed as the property of others.

22

(intel)

Slide courtesy of Intel, LUG2014 "Moving Lustre Forward" presentation

SD[®]

Lustre* + Hadoop: Open Platform for High Performance Data Analytics

Value Prop: Features, Functions, and Benefits

Performance

- Bring compute to the data: Run MapReduce* on Lustre without code changes
- Run MapReduce faster: Avoid the intermediate file shuffle with shared storage

Efficiency

- Avoid Hadoop* islands in the sea of HPC systems
- Run MapReduce jobs alongside HPC workloads with full access to the cluster resources

Manageability

- Use the seamless integration to manage one common platform for Hadoop and HPC
- Develop with multiple programming models and deploy on shared storage

* Some names and brands may be claimed as the property of others

<mark>9</mark> 23

(intel.

Slide courtesy of Intel, LUG2014 "Moving Lustre Forward" presentation

Extending Lustre beyond the data center

- HSM & policy engines
- Automated cloud tiering
- Research collaborations
- Data processing as a service
- Global business data sharing

HSM and Policy Managers

Lustre 2.5 introduced HSM capabilities

- An interface for data movement within Lustre namespace
- Does not include policy engines

Policy Engines

- iRODS Integrated Rule Oriented Data System; http://irods.org/
 - Open source data management software
 - Functions independently of storage resources and abstracts data control away from storage devices and device location

ONSORTIUN

- Robinhood
 - $\hfill\square$ Open source policy engine to monitor and schedule actions on file systems
 - Developed at CEA; <u>http://www-hpc.cea.fr/index-en.htm</u>

- Versity Storage Manager
 - An enterprise-class storage virtualization and archiving system that runs
 - Based on Open-source SAM-QFS

Bridging Lustre to a Global Object Store

2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

DDN Web Object Scaler The Ultimate in Flexibility & Scale

- Architecture: choose any number of sites
- Platform: choose integrated DDN Hardware, or softwareonly
- Data Protection: choose from a wide range of protection schemes
- Integration: choose natively integrated applications, direct integration through native object API's or file gateways

WOS Feature Baseline

U

Collaborate, Distribute, Federate

SD @

SSERCA: Cross-university Data Sharing

Gene Sequencing as a Service

Global Business Data Sharing

- Lustre is open source
- Lustre has a proven ability to scale
- Lustre is incorporating new features to better support small file IO
- Lustre's reach extends from the data center to the globe

Could Lustre be the foundation for your softwaredefined-storage future?

Thank You!

Keep in touch with us

sales@ddn.com

2929 Patrick Henry Drive Santa Clara, CA 95054

@ddn_limitless

1.800.837.2298 1.818.700.4000

company/datadirect-networks

Lustre Scalability and Performance

Feature	Current Practical Range	Tested in Production
Client Scalability	100-100000	50000+ clients, many in the 10000 to 20000 range
Client Performance	Single client: I/O 90% of network bandwidth Aggregate: 2.5 TB/sec I/O	Single client: 2 GB/sec I/O, 1000 metadata ops/sec Aggregate: 240 GB/sec I/O
OSS Scalability	Single OSS: I-32 OSTs per OSS, I28TB per OST OSS count: 500 OSSs, with up to 4000 OSTs	Single OSS: 8 OSTs per OSS, 16TB per OST OSS count: 450 OSSs with 1000 4TB OSTs 192 OSSs with 1344 8TB OSTs
OSS Performance	Single OSS: 5 GB/sec Aggregate: 2.5 TB/sec	Single OSS: 2.0+ GB/sec Aggregate: 240 GB/sec
MDS Scalability	Single MDT: 4 billion files (Idiskfs), 256 trillion files (ZFS) MDS count: 1 primary + 1 backup Introduced in Lustre 2.4Up to 4096 MDTs and up to 4096 MDSs	Single MDT: I billion files MDS count: I primary + I backup
MDS Performance	35000/s create operations, 100000/s metadata stat operations	15000/s create operations, 35000/s metadata stat operations
File system Scalability	Single File: 2.5 PB max file size Aggregate: 512 PB space, 4 billion files	Single File: multi-TB max file size Aggregate: 55 PB space, I billion files 35

