Service Oriented Performance Analysis

Da Qi Ren and Masood Mortazavi US R&D Center Santa Clara, CA, USA

www.huawei.com

Performance Model for Service in Data Center and Cloud

- 1. Service Oriented (end to end) big data performance analysis has become an extreme attention of ICT industry, the related techniques are being investigated by numerous hardware and software vendors.
- 2. Compute and storage devices, as one of the core components of a data center system, need specially designed approaches to measure, evaluate and analyze their performance.
- 3. This talk introduces our methods to create the performance model based on workload characterization, algorithm level behavior tracing and capture, and software platform management.
- 4. The functionality and capability of our methodology have been validated through benchmarks and measurements performed on real data center system.

A FusionInsight System for Big Data

HUAWEI TECHNOLOGIES CO., LTD.

Huawei Confidential

Performance Modeling and Analysis

Performance Analysis

Program Behavior Model

- Correlates data from all the experiments based on the common sampling rate and common time line;
- 2. Analyzing performance parameters and the application's (Data Sorting) behavior
- 3. Analyzing performance parameters and the application's (Transactions) behavior
- 4. Analyzing performance parameters and the application's (K-Means Clustering) behavior
- 5. Identified program characters and create leading markers;
- 6. Identified program segments and perform detailed analysis on each segment;
- Developed a Model that can use data captured from the systems stimuli and explore bottlenecks and dependencies.

HUAWEI TECHNOLOGIES CO., LTD.

Performance Tuning

HUAWEI TECHNOLOGIES CO., LTD.

Huawei Confidential

Power/Energy Tunings

HUAWEI TECHNOLOGIES CO., LTD.

Major Scenarios and the WL Characterization

Application	Workloads	Algorithms	Characterization	Computing methods	Benchmarks
Scenarios					
Business	TeraSort	Sorting	I/O intensive	Massive data	Hadoop Sort
Intelligent		Algorithms	Parallel Computing	Parallel sorting	
				Matrix Computing	
	PageRank	Search Engines /	Multiple resource	Massive Matrix	Hadoop/Spark +
	K-means	Ranking pages	Utilization	Computing	
	clustering				
	Naive Bayes/	Decision Supports	Computing intensive	Parallel computing	Hadoop/Spark
	Aprioi Algorithms	Queries			
		Association Rules			
VMall	Joint Query	List , Tables,	Computing Intensive	List , Tables,	Hive
		Hash tables,		Hash tables,	
		Search Tech.		Search Tech.	
Cloud+	Read/Write	Multiple	I/O	Parallel Database Access	HBase
	/Scan	Data Operations	Cloud	/ Virtual machines /	CBTOOL, (SPEC
			Different DBs	Queries	Cloud)

HUAWEI TECHNOLOGIES CO., LTD.

Hadoop Cluster HW Configuration

HUAWEI TECHNOLOGIES CO., LTD.

Huawei Confidential

Memory Capacity Scalability

TeraSort CPU Utilization (24CPUs)

HUAWEI TECHNOLOGIES CO., LTD.

Huawei Confidential

Algorithm Behaviors in K-Means Clustering

HUAWEI TECHNOLOGIES CO., LTD.

Huawei Confidential

Algorithm Behaviors in K-Means Clustering

Page 12

HUAWEI TECHNOLOGIES CO., LTD.

Characters of K-means Clustering

CPU usage and the corresponding power measurement results, when executing Kmeans clustering operations following the system configuration.

HDD and Main board (include memory) power measurement results, when executing K-means clustering operations following the system configuration.

Characters of K-means Clustering

K-Means Job Parameter	Results (Clustering Phase)	Results (Data Writing Phase)	
CPU Power (average)	122.21W	98.67W	
Main board Power (incl. memory)	72.14W	72.09W	
HDD Energy	7.03W	7.17W	
Results			
Data Size / Watt	126.04M/Watt	158.13M/Watt	

The Physical memory usage, total disk read and write measurement results, when executing K-means clustering operations following the system configuration.

The average of power measurement results for k-means clustering at clustering operation phase and data writing phase. The throughput and power performance of the target platform is concluded.

Big Bench Performance Chart

Most OEMs do provide the capability to implement power measurement.

In the latest generation IPMI can measure Power for the Entire system power, CPU subdomain power Memory Subdomain power.

Query	Input Datatype	Processing Model	Query	Input Datatype	Processing Model
#1	Structured	Java MR	#16	Structured	Java MR (OpenNLP)
#2	Semi-Structured	Java MR	#17	Structured	HiveQL
#3	Semi-Structured	Python Streaming MR	#18	Unstructured	Java MR (OpenNLP)
#4	Semi-Structured	Python Streaming MR	#19	Structured	Java MR (OpenNLP)
#5	Semi-Structured	HiveQL	#20	Structured	Java MR (Mahout)
#6	Structured	HiveQL	#21	Structured	HiveQL
#7	Structured	HiveQL	#22	Structured	HiveQL
#8	Semi-Structured	HiveQL	#23	Structured	HiveQL
#9	Structured	HiveQL	#24	Structured	HiveQL
#10	Unstructured	Java MR (OpenNLP)	#25	Structured	Java MR (Mahout)
#11	Unstructured	HiveQL	#26	Structured	Java MR (Mahout)
#12	Semi-Structured	HiveQL	#27	Unstructured	Java MR (OpenNLP)
#13	Structured	HiveQL	#28	Unstructured	Java MR (Mahout)
#14	Structured	HiveQL	#29	Structured	Python Streaming MR
#15	Structured	Java MR (Mahout)	#30	Semi-Structured	Python Streaming MR

HUAWEI TECHNOLOGIES CO., LTD.

Huawei Confidential

Performance Analysis on Cloud

SPEC Cloud 2016

CloudBecch (CBTOOL)

- o CloudBench kit , CloudOS, Virtual machine perofmrnace and reports.
- \circ 4 date bases performance : Cassandra ; Hbase ; PNUTS ; MySQL
- O Uniform distribution; zipfian distribution; popularity distribution; Latest distribution; multinomial distribution.

Also Benchmarked

- \circ SPECvirt
- o Refer: Cloudsuite, CBTooL

HUAWEI TECHNOLOGIES CO., LTD.

From Application to Performance

TABLE I					
POWER FEATURES OF EACH PE					
		CPU	GPU		
PF Components	MFlops	Frequency	NV/Memory		
I E Components	/W	Scaling	Frequency		
		(GHz)	(MHz)		
Intel QX9650 +	83.5	2	650 / 972		
GF 8800 GTS/512	73.6	3	650/ 972		
Intel QX9650 +	76.9	2	650 / 972		
2 GF 8800 GTS/512	75.1	3	650 / 972		
QX9650 (Share Work)+	70.2	2	650 / 972		
2 GF 8800 GTS/512	71.3	3	650 / 972		
Intel i7 +	81.3	2.67	513 / 792		
GF 8800 GTS /640M	70.8	1.60	513 / 792		
Intel QX9650	2.4	2	-		
	1.7	3	-		
Intel i7	2.3	2.67	-		
	4.4	1.60	-		

$$T_{CPU_{QX9650}^{3GH:}\times GPU_{8800}} = 2N^3 / GFLOPS_{CPU_{QX9650}^{3GH:}\times GPU_{8800}}$$

$$P_{CPU_{QX'9650}^{3GHE} \times GPU_{8800}} = \frac{GFLOPS_{CPU_{QX'9650}^{3GHE} \times GPU_{8800}}}{GFLOPSperWatt_{CPU_{QX'9650}^{3GHE} \times GPU_{8800}}}$$

$$E(w) = T_{CPU_{QX9650}^{3GHz} \times GPU_{8800}} \cdot P_{CPU_{QX9650}^{3GHz} \times GPU_{8800}}$$

$$P(w) = \sum_{i=1}^{N} P_{Compute}^{i}\left(w^{i}\right) + \sum_{j=1}^{M} P_{Storage}^{j}\left(w^{j}\right) + P_{network}(w)$$

HUAWEI TECHNOLOGIES CO., LTD.

Energy Tuning

	Controlled by C Through IPMI c Three mechanise	or ms 🕂	Contro server syster	lled by Fan in the , OR the cooling n in D. Center	Controlled by highe level software	r
Components	Frequencies	Voltages		Temperature	Usage	Total
CPUs (processors, cores)	f (Frequency steps)	V (VIDs)		т	$P = ACV^2 \mathbf{i}$	Power =
Memories (RAM, NVM)	f (Frequency steps)	V (VIDs)		т	$P = ACV^2 \mathbf{i}$	- Dynamic
GPUs (cores)	f (Frequency steps)	V (VIDs)		т	$P = ACV^2 \mathbf{i}$	Power +
Board (buses, slots)	f (Frequency steps)	V (VIDs)		т		ShortCin
Buses (PCI, Optical)	f (Frequency steps)	V (VIDs)		т		cuitPower
Disk (HDD, SSD)	f (Frequency steps)	V (VIDs)		т		r+Leaka
I/O (Network, DISK I/O)	f (Frequency steps)	V (VIDs)		т		gePower

where A is the active fraction of the gates in the CMOS element that are switching each clock cycle, C is the total capacitance driven by all the gate outputs in the CMOS element (thereby making AC the capacitance being switched per clock cycles), V is the operating voltage of the CMOS element, and f is the frequency of the clock.

Thank you!

HUAWEI TECHNOLOGIES CO., LTD.

