

Cloud Access Control Delegation

David Slik NetApp, Inc.

- The use of cloud-based data storage has significant technical and business value:
 - Economic "as-a-service" consumption
 - Geographic diversity & mobility
 - Proximity to cloud compute resources
- However, cloud-based data storage introduces significant legal and operational risks:
 - Maintaining data ownership and controls
 - Preventing unauthorized data access

- These areas of concern have limited the adoption of cloud-based data storage outside situations where:
 - Data is already public
 - Unauthorized disclosure has little economic or political consequence
 - Unauthorized disclosure can be blamed on or consequences transferred to other actors (such as the cloud provider)
 - Costs of avoiding risks are higher than costs of the consequences of the risks

- Encrypting data before storing it into the cloud resolves governance and access control concerns, but introduces significant new issues:
 - Need to build an entirely new access control and key management system (KMS) + key distribution infrastructure, and modify clients to use these
 - Cloud resources can no longer access data directly, and data needs to flow through custom code that talks with the KMS and decrypts data

- Ideally, a solution to these trade-offs would involve:
 - Not significantly increasing costs, as this would negate economic benefits of cloud-based data storage
 - Not requiring modifications to cloud infrastructure, which is often not possible because it is controlled by third-parties
 - Require limited or no modifications to applications

Introducing SNIA DAC

DAC – Delegated Access Control

- Standardizes a simple challenge/response protocol for delegating access control decisions and key distribution for HTTP-based storage
- Started as CDMI extension, but works with S3, Swift, etc.
- Can be integrated into any HTTP-based storage protocol
 - Allows use by unmodified clients
 - Allows transparent integration with cloud computing
- Can be used directly by clients
 - Allows use with clouds that don't support DAC

Introducing SNIA DAC

Integrated with Cloud Server DAC Request GET DAC Storage Cloud Client Provider Server DAC Response **Plaintext** Key **Plaintext GET** Read Cloud **KMS** OR Compute

Introducing SNIA DAC

Integrated with Storage Client

Trustworthy Cloud

- A cloud service that provides assurances (Legal, technical, reputation, audit, etc) that directives on data governance and access control will be honored.
 - Cloud permitted to access to the decryption keys
 - Cloud can thus access data plaintext
- Advantages
 - Allows unmodified clients
 - Allows cloud-driven data processing
- Disadvantages
 - Does not protect against a malicious cloud
 - Does not protect against a compromised cloud

Untrustworthy Cloud

- A cloud service that is known, suspected or capable of violating data governance and access control directives due to technical, financial or personnel issues.
 - Cloud not permitted to access decryption keys
 - Cloud cannot access data plaintext
- Advantages
 - Does not require modifications to cloud
 - Protects against malicious and compromised clouds
- Disadvantages
 - Requires client modifications or proxy
 - Does not support cloud-driven data processing

Delegated Access Control Landscape

Untrustworthy Cloud Trustworthy Cloud Clond Server **Access Control** DAC Performed by Client DAC Or Required for Trust Client DAC Required for Trust Support for Delegated Control Client DAC Server Access DAC Required for Trust **AWS KMS**

[1] https://d0.awsstatic.com/whitepapers/AWS_Securing_Data_at_Rest_with_Encryption.pdf

Additional Integration Points

- Cloud Integration
 - Requires participation of cloud provider
- Client Integration
 - Requires modifications to application
- Web Application Integration
 - Requires less invasive modifications to web apps
- Proxy Integration
 - Requires no modifications to applications

Web Application Integration

Where cloud supports Delegated Access Control

- Javascript library added to web application that intercepts all AJAX calls
 - Library adds headers to cloud HTTP(S) operations
 - Cloud forwards request to Delegated Access Control system
 - Delegated Access Control system makes access determination decision based on client headers
 - Ciphertext returned with access headers
 - Library decrypts access headers
 - Library uses access headers to transparently decrypt ciphertext

Web Application Integration

Where cloud does not support Delegated Access Control

- Javascript library added to web application that intercepts all AJAX calls
 - Library gets ciphertext from cloud HTTP(S) operation
 - Library makes Delegated Access Control request directly to Delegated Access Control system
 - Delegated Access Control system makes access determination decision based on client headers
 - Library decrypts access headers
 - Library uses access headers to transparently decrypt ciphertext

Native Protocol Proxy Integration

Where cloud supports Delegated Access Control

- Proxy added between application and cloud provider
 - Proxy receives application HTTP(S) operation
 - Proxy adds adds headers to cloud operations
 - Cloud forwards request to Delegated Access Control system
 - Delegated Access Control system makes access determination decision based on client headers
 - Ciphertext returned with access headers to proxy
 - Proxy decrypts access headers
 - Proxy uses access headers to transparently decrypt ciphertext, and returns plaintext to application

Native Protocol Proxy Integration

Where cloud does not support Delegated Access Control

- Proxy added between application and cloud provider
 - Proxy receives application HTTP(S) operation
 - Proxy gets ciphertext from cloud
 - Proxy makes Delegated Access Control request directly to Delegated Access Control system
 - Delegated Access Control system makes access determination decision based on client headers
 - Proxy decrypts access headers
 - Proxy uses access headers to transparently decrypt ciphertext, and returns plaintext to application

Demonstration

JavaScript/CDMI Client Demonstration

Call for Participation

- SNIA is widening work on DAC to take it beyond CDMI
- Looking at creating a stand-alone standard for DAC
- If you're working with object/cloud storage, and want to participate, contact us and join the Cloud technical working group (TWG)
 - Weekly Wednesday calls
 - Bi-monthly face-to-face meetings
 - Quarterly plugfests
- Join us at the Plugfest being held at SDC!

Thank you!

Questions

dslik@netapp.com

