STORAGE DEVELOPER CONFERENCE

Deploying and Optimizing for Cloud Storage Systems using Swift Simulator

Gen Xu Intel Corporation

- Design challenges
- Cloud Storage system Swift modeling overview
- Use Case study

Cloud Storage System Design Challenges

Our customers are commonly addressing these challenges:

✓ Plan storage capacity?

✓ Not over provisioning?

✓ Minimize cost?

✓ Meet the SLA/SLO requirements?

3

✓ Predict system performance?

SD @

ΓΟ

Complex Cluster Architecture

Simulation Architecture

What-If Analysis for

- S/W stack optimization
- Predict perf on varies
 node, network and disk
 configuration
- Explore against users number and cluster size

Details @ ICPP-2014 paper "Simulating Big Data Clusters for System Planning, Evaluation and Optimization"

Simulation Approach

Design challenges
 Cloud Storage system Swift modeling overview
 Use Case study

2016 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

7

Swift Simulator

Logic View of a Swift Cluster

Frontend model of Simulation

Backend model: System Topology (Star, CLOS...), Ring parsing, Node mapping, Coroutine scheduling, Perf Lib ...

Simulation Accuracy

Hardware Validation

- □ STAR, Fat-Tree, CLOS
- **1GbE**, 10GbE, 25GbE, 50GbE
- HDD, SSD, NVMe
- Node count

10

15

□ ...

120%

115%

110%

105%

100%

95%

90%

85%

80%

0

- Operation Type (PUT, GET, MIX)
- Object Size (16KB ~ 1024MB)
- Proxy worker#, Object worker#

30 9

- Concurrency#
- Write Barrier

SD[®]

Output: Workload and H/W metrics

2016 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Job TimeStamp 💌

- Design challenges
- Cloud Storage system Swift modeling overview
- Use Case study

2016 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

11

Case Study: Optimize one cloud storage system

- Current: A media storage system for image thumbnail and audio.
- Design Goal: Achieve to 2X IOPS and bandwidth for both small objects and large objects in read, write and mixed scenarios.

Cluster Configuration

Object type	Object size		
Thumbnail	16KB		
Audio	16MB		

Validation against baseline setup

Higher than 95% average accuracy Ready to use simulator to predict performance

SD[®]

Design options

- Software optimization
- □ H/W scale up: Storage, Network, CPU
- □ H/W scale out: add more nodes

Software optimization

Up to 1.5x improvement with software optimization Set worker count for proxy and storage to 2 or 3 times the core count

Scale up: HDD -> SSD

Expect SSDs to improve performance over HDD based storage

Scale up: 10GbE -> 25GbE

2016 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

18

Scale up: XEON E5-2695 v3 -> E5-2699 v4

Frequency: 2.3GHz vs. 2.2GHz Core count: 14 vs. 22

Up to 1.58x improvement with CPU optimization

Scale-up optimization summary

Up to 6.73x improvement with scale-up optimization

Scale out optimization

SD

16

Scale out optimization

Up to 2x improvement with scale-out optimization Better scale up firstly, then scale out

Optimization analysis

- Set worker count for proxy and storage to 2 or 3 times the core count.
- SSD improves performance over HDD.
- 10Gb is okay for small objects. Need to update network for large objects.
- CPU efficiency is high for small objects.
- Better scale up firstly, then scale out.
- Properly configure ratio of proxy to storage server.

cofluent.intel.com

SD⁶

What's Inside

INTEL® COFLUENT™ TECHNOLOGY FOR BIG DATA Solutions for big data cluster Simulation, Planning and Optimization

Intel® CoFluent[™] Technology for Big Data

FASTER CLUSTER DEPLOYMENT:

Explore deployment options and meet performance goals

OPTIMIZE CLUSTERS:

Find performance bottlenecks and optimize software operation

SCALE UP WITH CONFIDENCE:

Simulate to determine the minimum cost to meet your future demand

Intel® CoFluent[™] Studio Based Simulation

Generic Parameters	II. 3
PROCESSOR_TYPE	4 🖌
Intel_Xeon_Processor_E5_4640	
SATA_DEVICE_TYPE	4 🖌
Intel_SSD_DC_S3500_Series_480GB	
Intel_SSD_DC_S3700_Series_800GB	
Intel_SSD_DC_S3500_Series_480GB	
Intel_SSD_X25_M_Series_160GB	
Intel_SSD_520_Series_480GB	
Standard_SATA_Drive_7200RPM_2TB	
Standard_SATA_Drive_5900RPM_2TB	

Enables fast "What if?" analysis with a virtual system

Hardware Coverage

Validated: 700 Nodes

Rack Scale Architecture

SD[©]

Fast Simulation

S

16

Host machine to run simulations

2016 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

31

Swift Simulation Input

- Workload Parameters
 - Concurrency
 - Request Size
- S/W Settings
 - Role setting (proxy, storage) for each node
 - Object ring
 - Proxy/object worker number
 - Object size
- H/W Settings:
 - Cluster size
 - System Components (CPU, Disks, Memory, Network)
 - Network topology

Storage Optimizing: HDD VS SSD

Storage Devices Assumed Performance

Class	Туре	IOPS		Throughput	
Storage Device	capacity	RND 4KB 100%R	RND 4KB 100%W	SEQ 64KB 100%W	SEQ 64KB 100%R
SSD S3700	1TBGB	47,806	59,415	403MB/s	492MB/s
7200 RPM HDD	1TB	390	410	180MB/s	180MB/s

