
2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Fun with Linearity:
How encryption and erasure codes are intimately related

Jason Resch
IBM

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Presentation Overview

 Linear Functions
 Combining Linear Functions
 Linearity of Erasure Codes
 Erasure Codes and Encryption
 Erasure Codes and Integrity Checks
 Exploiting Linearity for New Applications

2

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Linear Functions

3

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Linear Functions Defined

 A function F is “linear” if it satisfies the following:

F(x) + F(y) = F(x + y)

 In short, a function is linear if an operation

applied to the inputs yields the same result as
performing that operation on the outputs.

 4

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Examples of Linear Functions

 Consider the function MulFive(X)
 It multiplies any input by 5
 Is this a linear function?

5

 Let’s consider two inputs, X=3 and Y=7:
MulFive(3) = 15
MulFive(7) = 35
MulFive(3 + 7) = MulFive(3) + MulFive(7)

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

CRC as a Linear Function

 Many functions have this property, among them:
The Cyclic Redundancy Check (CRC)
CRC is commonly used for integrity checks

 CRC is a “polynomial division” in a finite field
Addition in this field is “⊕” rather than “+”

6

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Consequences of CRC’s Linearity

 Given the definition of linearity, it follows that:
CRC(x) ⊕ CRC(y) = CRC(x ⊕ y)

 In actual implementations of CRC, there is a

caveat, we must also add CRC(zeros)
Where ‘zeros’ is a binary string consisting of

all zeros and is equal in length to ‘x’ and ‘y’
 CRC(x) ⊕ CRC(y) ⊕ CRC(zeros) = CRC(x ⊕ y ⊕

zeros)
7

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Example of zlib CRC-32’s linearity

8

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Combining Linear Functions

9

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Encryption Functions

 Encryption functions, in their most basic form,
are simply random number generators
Key acts as a “seed” to generate an arbitrarily

long set of random output–the “keystream”
Keystream is XORed with Plaintext to encrypt

10

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Encryption Visualized

11

Cipher

Key

1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 …

Keystream

0 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 … Message:

⊕
1 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 Ciphertext:

fli
p

fli
p

fli
p

fli
p

fli
p

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Encryption and CRC

 The XOR operation used in encryption is the
same as addition in the finite field of CRC…
Ciphertext = Plaintext ⊕ Keystream

 Since the Ciphertext is equal to the Plaintext

added to the Keystream it follows that:
 CRC(Ciphertext) = CRC(Plaintext) ⊕

CRC(Keystream)

12

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Linearity of Erasure Codes

13

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Erasure Codes

 Erasure Codes encode T inputs into N outputs
 Can recover original input from any T of outputs

 Examples:
RAID 5, RAID 6, Reed-Solomon, Rabin’s

Information Dispersal, Shamir Secret Sharing

14

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Visualizing Erasure Codes

15

Input Data
Erasure
Code

Fragment 1

Fragment 2

Fragment 3

Fragment 4

Fragment 5

Fragment 6

Fragment 7

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Applications of Erasure Codes

 Erasure Codes are often used to achieve
durability and availability in storage systems
Files split into T fragments, redundancy

expands these into N fragments
Each fragment stored to different node/drive

Reliable: Data can survive (N – T) faults
Efficient: Overhead equal to (N / T)

16

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Erasure Codes are Linear

 Like CRC and Encryption, Erasure Codes
operate within a finite field

 Encoding and decoding are implemented via
addition and multiplication in a field

 Erasure Codes are linear:
EC(x) ⊕ EC(y) = EC(x ⊕ y)

17

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Erasure Codes and Encryption

18

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Erasure Codes and Encryption

 Since encryption is addition, and because
Erasure Codes are linear functions:
 EC(Ciphertext) = EC(Plaintext) ⊕ EC(Keystream)

 If we erasure code encrypted data, we will get output

fragments that will be identical to if we erasure code the
plaintext, and add those fragments to the fragments
resulting from erasure coding the keystream.

19

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Erasure Coding Plaintext

20

Plaintext
Erasure
Code

Fragment 1

Fragment 2

Fragment 3

Fragment 4

Fragment 5

Fragment 6

Fragment 7

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Erasure Coding Keystream

21

Keystream
Erasure
Code

Fragment 1

Fragment 2

Fragment 3

Fragment 4

Fragment 5

Fragment 6

Fragment 7

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Relating the Erasure Code Inputs

22

Plaintext Keystream Ciphertext ⊕ =

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Erasure Coding Ciphertext

23

Ciphertext
Erasure
Code

Fragment 1

Fragment 2

Fragment 3

Fragment 4

Fragment 5

Fragment 6

Fragment 7

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Relating the Erasure Code Outputs

24

Fragment 1

Fragment 2

Fragment 3

Fragment 4

Fragment 5

Fragment 6

Fragment 7

Fragment 1

Fragment 2

Fragment 3

Fragment 4

Fragment 5

Fragment 6

Fragment 7

Fragment 1

Fragment 2

Fragment 3

Fragment 4

Fragment 5

Fragment 6

Fragment 7

⊕
⊕
⊕
⊕
⊕
⊕

⊕

=

=

=

=

=

=

=

Plaintext Fragments Keystream Fragments Ciphertext Fragments

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Using this property in practice

 In a distributed erasure coded system, we can:
Encrypt previously unencrypted fragments
Decrypt previously encrypted fragments
Rekey encrypted fragments

 But we can do so without any network transfer!
 We only need to send keys to storage nodes

25

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Illustrating Rekeying of Fragments

26

EC(Plaintext) EC(Keystream1)
EC(Plaintext ⊕

Keystream1)
⊕ =

Fragment of Plaintext Fragment of Keystream1 What’s currently stored

EC(Plaintext ⊕
Keystream2)

What we want stored

EC(Plaintext) EC(Keystream2) ⊕ =

Fragment of Plaintext Fragment of Keystream2

EC(Plaintext ⊕
Keystream2)

What we want stored

EC(Plaintext ⊕
Keystream1)

EC(Keystream1 ⊕ Keystream2) ⊕ =

What’s currently stored Fragment of Keystreams

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Erasure Codes and Integrity Checks

27

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Erasure Codes and CRC

 We know Erasure Codes are linear
 We know Cyclic Redundancy Checks are linear
How can we combine them for practical uses?

 We will need to explore the internal workings of

Erasure Codes to see how this is possible..

28

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Erasure Codes: Encoding

29

N×T “Encoding Matrix” T inputs N outputs

× =

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Erasure Codes: Encoding (Color Coded)

30

N×T “Encoding Matrix” T inputs N outputs

× =

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Erasure Codes: Delete Irrelevant Rows

31

N×T “Encoding Matrix” T inputs N outputs

× =

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Erasure Codes: Getting the Inputs Back

32

T×T “Truncated Matrix” T inputs T outputs

× =

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Erasure Codes: Matrix Cancellation

33

Truncated Matrix T inputs T outputs

× = ×

(Truncated Matrix)-1

×

(Truncated Matrix)-1

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Erasure Codes: Recovered Inputs

34

T inputs T outputs

=

(Truncated Matrix)-1

×

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Combing CRCs with Erasure Codes

 With this background on how Erasure Codes
encode and decode information, lets see what
else we can do..
We observed decoding as happening all at

once, given all T of the outputs
But it doesn’t have to be like this, the decode

operation can be done in T distinct steps

35

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Decomposing the Output Vector

36

T outputs

=

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

⊕ ⊕ ⊕ ⊕

sum of vectors with individual outputs

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

= ×

partially decoded result output (Truncated Matrix)-1

Decoding with one output at a time

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

= ×

partially decoded result output

Decoding with one output at a time

(Truncated Matrix)-1

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

= ×

partially decoded result output

Decoding with one output at a time

(Truncated Matrix)-1

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

= ×

partially decoded result output

Decoding with one output at a time

(Truncated Matrix)-1

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

partially decoded result output

= ×

Decoding with one output at a time

(Truncated Matrix)-1

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

9/7/2016

T inputs

= ⊕ ⊕ ⊕ ⊕

Putting them all together

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Observation

 Just as the ciphertext is the sum of a plaintext
and a keystream, the original input is a sum of
the T partially decoded results
This means the sum of the CRCs of the

partially decoded results is the data’s CRC!

43

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

9/7/2016

Original Input

= ⊕ ⊕ ⊕ ⊕

Computing CRCs of Data from fragments

Original Input

= ⊕ ⊕ ⊕ ⊕ CRC() CRC() CRC() CRC() CRC() CRC()

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Exploiting Linearity for New Applications

45

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Secure Rebuilding

 Linearity also has applications for rebuilding:
 It enables rebuilding of lost fragments, without

having to decode the data first
Saves significant bandwidth in some topologies

 It can be further extended to allow rebuilding
without exposing any other fragment
Sounds paradoxical and impossible, but its not!
Very useful in cases of secret sharing

46

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Conclusions

 Linear functions leave much room for innovation
 So far it has provided the ability to:
Encrypt, decrypt and rekey erasure coded

data without any network transfer
Verify integrity of erasure coded data without

having to download or retrieve it
Rebuild fragments with minimal network

transfer and without having to decode data
47

2016 Storage Developer Conference. Copyright © 2016 IBM. All Rights Reserved.

Questions

48

Secure and Efficient Rebuilding:
http://dimacs.rutgers.edu/Workshops/SecureNetworking/Slides/resch.pptx

http://dimacs.rutgers.edu/Workshops/SecureNetworking/Slides/resch.pptx

	Fun with Linearity:�How encryption and erasure codes are intimately related
	Presentation Overview
	Linear Functions
	Linear Functions Defined
	Examples of Linear Functions
	CRC as a Linear Function
	Consequences of CRC’s Linearity
	Example of zlib CRC-32’s linearity
	Combining Linear Functions
	Encryption Functions
	Encryption Visualized
	Encryption and CRC
	Linearity of Erasure Codes
	Erasure Codes
	Visualizing Erasure Codes
	Applications of Erasure Codes
	Erasure Codes are Linear
	Erasure Codes and Encryption
	Erasure Codes and Encryption
	Erasure Coding Plaintext
	Erasure Coding Keystream
	Relating the Erasure Code Inputs
	Erasure Coding Ciphertext
	Relating the Erasure Code Outputs
	Using this property in practice
	Illustrating Rekeying of Fragments
	Erasure Codes and Integrity Checks
	Erasure Codes and CRC
	Erasure Codes: Encoding
	Erasure Codes: Encoding (Color Coded)
	Erasure Codes: Delete Irrelevant Rows
	Erasure Codes: Getting the Inputs Back
	Erasure Codes: Matrix Cancellation
	Erasure Codes: Recovered Inputs
	Combing CRCs with Erasure Codes
	Decomposing the Output Vector
	Decoding with one output at a time
	Decoding with one output at a time
	Decoding with one output at a time
	Decoding with one output at a time
	Decoding with one output at a time
	Putting them all together
	Observation
	Computing CRCs of Data from fragments
	Exploiting Linearity for New Applications
	Secure Rebuilding
	Conclusions
	Questions

