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Presentation Overview 

 Linear Functions 
 Combining Linear Functions 
 Linearity of Erasure Codes 
 Erasure Codes and Encryption 
 Erasure Codes and Integrity Checks 
 Exploiting Linearity for New Applications 
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Linear Functions 
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Linear Functions Defined 

 A function F is “linear” if it satisfies the following: 
 
F(x) + F(y) = F(x + y) 

 
 In short, a function is linear if an operation 

applied to the inputs yields the same result as 
performing that operation on the outputs. 
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Examples of Linear Functions 

 Consider the function MulFive(X) 
 It multiplies any input by 5 
 Is this a linear function? 

5 

 Let’s consider two inputs, X=3 and Y=7: 
MulFive(3) = 15 
MulFive(7) = 35 
MulFive(3 + 7) = MulFive(3) + MulFive(7) 
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CRC as a Linear Function 

 Many functions have this property, among them: 
The Cyclic Redundancy Check (CRC) 
CRC is commonly used for integrity checks 

 
 CRC is a “polynomial division” in a finite field 
Addition in this field is “⊕” rather than “+” 

6 
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Consequences of CRC’s Linearity 

 Given the definition of linearity, it follows that: 
CRC(x) ⊕ CRC(y) = CRC(x ⊕ y) 

 
 In actual implementations of CRC, there is a 

caveat, we must also add CRC(zeros) 
Where ‘zeros’ is a binary string consisting of 

all zeros and is equal in length to ‘x’ and ‘y’ 
 CRC(x) ⊕ CRC(y) ⊕ CRC(zeros) = CRC(x ⊕ y ⊕ 

zeros) 
7 
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Example of zlib CRC-32’s linearity 
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Combining Linear Functions 
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Encryption Functions 

 Encryption functions, in their most basic form, 
are simply random number generators 
Key acts as a “seed” to generate an arbitrarily 

long set of random output–the “keystream” 
Keystream is XORed with Plaintext to encrypt 

10 
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Encryption Visualized 
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Encryption and CRC 

 The XOR operation used in encryption is the 
same as addition in the finite field of CRC… 
Ciphertext = Plaintext ⊕ Keystream 

 
 Since the Ciphertext is equal to the Plaintext 

added to the Keystream it follows that: 
 CRC(Ciphertext) = CRC(Plaintext) ⊕ 

CRC(Keystream) 

12 
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Linearity of Erasure Codes 

13 
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Erasure Codes 

 Erasure Codes encode T inputs into N outputs 
 Can recover original input from any T of outputs 

 
 Examples: 
RAID 5, RAID 6, Reed-Solomon, Rabin’s 

Information Dispersal, Shamir Secret Sharing 

14 
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Visualizing Erasure Codes 
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Applications of Erasure Codes 

 Erasure Codes are often used to achieve 
durability and availability in storage systems 
Files split into T fragments, redundancy 

expands these into N fragments 
Each fragment stored to different node/drive 

Reliable: Data can survive (N – T) faults 
Efficient: Overhead equal to (N / T) 

16 
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Erasure Codes are Linear 

 Like CRC and Encryption, Erasure Codes 
operate within a finite field 

 Encoding and decoding are implemented via 
addition and multiplication in a field 
 

 Erasure Codes are linear: 
EC(x) ⊕ EC(y) = EC(x ⊕ y) 

17 



2016 Storage  Developer Conference. Copyright © 2016 IBM.  All Rights Reserved. 
 

Erasure Codes and Encryption 

18 
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Erasure Codes and Encryption 

 Since encryption is addition, and because 
Erasure Codes are linear functions: 
 EC(Ciphertext) = EC(Plaintext) ⊕ EC(Keystream) 

 
 If we erasure code encrypted data, we will get output 

fragments that will be identical to if we erasure code the 
plaintext, and add those fragments to the fragments 
resulting from erasure coding the keystream. 

19 
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Erasure Coding Plaintext 
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Erasure Coding Keystream 
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Relating the Erasure Code Inputs 

22 

Plaintext Keystream Ciphertext ⊕ = 
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Erasure Coding Ciphertext 
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Relating the Erasure Code Outputs 
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Using this property in practice 

 In a distributed erasure coded system, we can: 
Encrypt previously unencrypted fragments 
Decrypt previously encrypted fragments 
Rekey encrypted fragments 

 
 But we can do so without any network transfer! 
 We only need to send keys to storage nodes 

25 
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Illustrating Rekeying of Fragments 
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EC(Plaintext) EC(Keystream1) 
EC(Plaintext ⊕ 

Keystream1) 
⊕ = 

Fragment of Plaintext Fragment of Keystream1 What’s currently stored 

EC(Plaintext ⊕ 
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What we want stored 
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Fragment of Plaintext Fragment of Keystream2 

EC(Plaintext ⊕ 
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EC(Keystream1 ⊕ Keystream2) ⊕ = 
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Erasure Codes and Integrity Checks 

27 
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Erasure Codes and CRC 

 We know Erasure Codes are linear 
 We know Cyclic Redundancy Checks are linear 
How can we combine them for practical uses? 

 
 We will need to explore the internal workings of 

Erasure Codes to see how this is possible.. 

28 
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Erasure Codes: Encoding 

29 

N×T “Encoding Matrix” T inputs N outputs 

× = 
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Erasure Codes: Encoding (Color Coded) 
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N×T “Encoding Matrix” T inputs N outputs 

× = 
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Erasure Codes: Delete Irrelevant Rows 
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N×T “Encoding Matrix” T inputs N outputs 

× = 
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Erasure Codes: Getting the Inputs Back 
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T×T “Truncated Matrix” T inputs T outputs 

× = 
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Erasure Codes: Matrix Cancellation 
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Truncated Matrix T inputs T outputs 

× = × 

(Truncated Matrix)-1 

× 

(Truncated Matrix)-1 
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Erasure Codes: Recovered Inputs 

34 

T inputs T outputs 

= 

(Truncated Matrix)-1 

× 
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Combing CRCs with Erasure Codes 

 With this background on how Erasure Codes 
encode and decode information, lets see what 
else we can do.. 
We observed decoding as happening all at 

once, given all T of the outputs 
But it doesn’t have to be like this, the decode 

operation can be done in T distinct steps 

35 
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Decomposing the Output Vector 

36 
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= × 

partially decoded result output (Truncated Matrix)-1 

Decoding with one output at a time 
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= × 

partially decoded result output 

Decoding with one output at a time 

(Truncated Matrix)-1 
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= × 

partially decoded result output 

Decoding with one output at a time 

(Truncated Matrix)-1 
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= × 

partially decoded result output 

Decoding with one output at a time 

(Truncated Matrix)-1 
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partially decoded result output 

= × 

Decoding with one output at a time 

(Truncated Matrix)-1 
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9/7/2016 

T inputs 

= ⊕ ⊕ ⊕ ⊕ 

Putting them all together 
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Observation 

 Just as the ciphertext is the sum of a plaintext 
and a keystream, the original input is a sum of 
the T partially decoded results 
This means the sum of the CRCs of the 

partially decoded results is the data’s CRC! 
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9/7/2016 

Original Input 

= ⊕ ⊕ ⊕ ⊕ 

Computing CRCs of Data from fragments 

Original Input 

= ⊕ ⊕ ⊕ ⊕ CRC(          ) CRC(          ) CRC(          ) CRC(          ) CRC(          ) CRC(          ) 
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Exploiting Linearity for New Applications 

45 
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Secure Rebuilding 

 Linearity also has applications for rebuilding: 
 It enables rebuilding of lost fragments, without 

having to decode the data first 
Saves significant bandwidth in some topologies 

 It can be further extended to allow rebuilding 
without exposing any other fragment 
Sounds paradoxical and impossible, but its not! 
Very useful in cases of secret sharing 

46 
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Conclusions 

 Linear functions leave much room for innovation 
 So far it has provided the ability to: 
Encrypt, decrypt and rekey erasure coded 

data without any network transfer 
Verify integrity of erasure coded data without 

having to download or retrieve it 
Rebuild fragments with minimal network 

transfer and without having to decode data 
47 
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Questions 

48 

Secure and Efficient Rebuilding: 
http://dimacs.rutgers.edu/Workshops/SecureNetworking/Slides/resch.pptx 
 
 

http://dimacs.rutgers.edu/Workshops/SecureNetworking/Slides/resch.pptx

	Fun with Linearity:�How encryption and erasure codes are intimately related 
	Presentation Overview
	Linear Functions
	Linear Functions Defined
	Examples of Linear Functions
	CRC as a Linear Function
	Consequences of CRC’s Linearity
	Example of zlib CRC-32’s linearity
	Combining Linear Functions
	Encryption Functions
	Encryption Visualized
	Encryption and CRC
	Linearity of Erasure Codes
	Erasure Codes
	Visualizing Erasure Codes
	Applications of Erasure Codes
	Erasure Codes are Linear
	Erasure Codes and Encryption
	Erasure Codes and Encryption
	Erasure Coding Plaintext
	Erasure Coding Keystream
	Relating the Erasure Code Inputs
	Erasure Coding Ciphertext
	Relating the Erasure Code Outputs
	Using this property in practice
	Illustrating Rekeying of Fragments
	Erasure Codes and Integrity Checks
	Erasure Codes and CRC
	Erasure Codes: Encoding
	Erasure Codes: Encoding (Color Coded)
	Erasure Codes: Delete Irrelevant Rows
	Erasure Codes: Getting the Inputs Back
	Erasure Codes: Matrix Cancellation
	Erasure Codes: Recovered Inputs
	Combing CRCs with Erasure Codes
	Decomposing the Output Vector
	Decoding with one output at a time
	Decoding with one output at a time
	Decoding with one output at a time
	Decoding with one output at a time
	Decoding with one output at a time
	Putting them all together
	Observation
	Computing CRCs of Data from fragments
	Exploiting Linearity for New Applications
	Secure Rebuilding
	Conclusions
	Questions

