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Linear Functions 
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Linear Functions Defined 

 A function F is “linear” if it satisfies the following: 
 
F(x) + F(y) = F(x + y) 

 
 In short, a function is linear if an operation 

applied to the inputs yields the same result as 
performing that operation on the outputs. 
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Examples of Linear Functions 

 Consider the function MulFive(X) 
 It multiplies any input by 5 
 Is this a linear function? 

5 

 Let’s consider two inputs, X=3 and Y=7: 
MulFive(3) = 15 
MulFive(7) = 35 
MulFive(3 + 7) = MulFive(3) + MulFive(7) 
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CRC as a Linear Function 

 Many functions have this property, among them: 
The Cyclic Redundancy Check (CRC) 
CRC is commonly used for integrity checks 

 
 CRC is a “polynomial division” in a finite field 
Addition in this field is “⊕” rather than “+” 
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Consequences of CRC’s Linearity 

 Given the definition of linearity, it follows that: 
CRC(x) ⊕ CRC(y) = CRC(x ⊕ y) 

 
 In actual implementations of CRC, there is a 

caveat, we must also add CRC(zeros) 
Where ‘zeros’ is a binary string consisting of 

all zeros and is equal in length to ‘x’ and ‘y’ 
 CRC(x) ⊕ CRC(y) ⊕ CRC(zeros) = CRC(x ⊕ y ⊕ 

zeros) 
7 
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Example of zlib CRC-32’s linearity 
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Combining Linear Functions 
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Encryption Functions 

 Encryption functions, in their most basic form, 
are simply random number generators 
Key acts as a “seed” to generate an arbitrarily 

long set of random output–the “keystream” 
Keystream is XORed with Plaintext to encrypt 
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Encryption Visualized 
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Encryption and CRC 

 The XOR operation used in encryption is the 
same as addition in the finite field of CRC… 
Ciphertext = Plaintext ⊕ Keystream 

 
 Since the Ciphertext is equal to the Plaintext 

added to the Keystream it follows that: 
 CRC(Ciphertext) = CRC(Plaintext) ⊕ 

CRC(Keystream) 
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Linearity of Erasure Codes 
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Erasure Codes 

 Erasure Codes encode T inputs into N outputs 
 Can recover original input from any T of outputs 

 
 Examples: 
RAID 5, RAID 6, Reed-Solomon, Rabin’s 

Information Dispersal, Shamir Secret Sharing 
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Visualizing Erasure Codes 
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Applications of Erasure Codes 

 Erasure Codes are often used to achieve 
durability and availability in storage systems 
Files split into T fragments, redundancy 

expands these into N fragments 
Each fragment stored to different node/drive 

Reliable: Data can survive (N – T) faults 
Efficient: Overhead equal to (N / T) 
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Erasure Codes are Linear 

 Like CRC and Encryption, Erasure Codes 
operate within a finite field 

 Encoding and decoding are implemented via 
addition and multiplication in a field 
 

 Erasure Codes are linear: 
EC(x) ⊕ EC(y) = EC(x ⊕ y) 

17 
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Erasure Codes and Encryption 
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Erasure Codes and Encryption 

 Since encryption is addition, and because 
Erasure Codes are linear functions: 
 EC(Ciphertext) = EC(Plaintext) ⊕ EC(Keystream) 

 
 If we erasure code encrypted data, we will get output 

fragments that will be identical to if we erasure code the 
plaintext, and add those fragments to the fragments 
resulting from erasure coding the keystream. 
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Erasure Coding Plaintext 
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Erasure Coding Keystream 
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Relating the Erasure Code Inputs 
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Plaintext Keystream Ciphertext ⊕ = 
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Erasure Coding Ciphertext 
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Relating the Erasure Code Outputs 
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Using this property in practice 

 In a distributed erasure coded system, we can: 
Encrypt previously unencrypted fragments 
Decrypt previously encrypted fragments 
Rekey encrypted fragments 

 
 But we can do so without any network transfer! 
 We only need to send keys to storage nodes 
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Illustrating Rekeying of Fragments 
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Erasure Codes and Integrity Checks 
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Erasure Codes and CRC 

 We know Erasure Codes are linear 
 We know Cyclic Redundancy Checks are linear 
How can we combine them for practical uses? 

 
 We will need to explore the internal workings of 

Erasure Codes to see how this is possible.. 
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Erasure Codes: Encoding 

29 

N×T “Encoding Matrix” T inputs N outputs 

× = 
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Erasure Codes: Encoding (Color Coded) 
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N×T “Encoding Matrix” T inputs N outputs 

× = 
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Erasure Codes: Delete Irrelevant Rows 
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N×T “Encoding Matrix” T inputs N outputs 

× = 
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Erasure Codes: Getting the Inputs Back 
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T×T “Truncated Matrix” T inputs T outputs 

× = 
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Erasure Codes: Matrix Cancellation 

33 

Truncated Matrix T inputs T outputs 

× = × 

(Truncated Matrix)-1 
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(Truncated Matrix)-1 
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Erasure Codes: Recovered Inputs 
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T inputs T outputs 
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× 
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Combing CRCs with Erasure Codes 

 With this background on how Erasure Codes 
encode and decode information, lets see what 
else we can do.. 
We observed decoding as happening all at 

once, given all T of the outputs 
But it doesn’t have to be like this, the decode 

operation can be done in T distinct steps 
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Decomposing the Output Vector 
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= × 

partially decoded result output (Truncated Matrix)-1 

Decoding with one output at a time 
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= × 

partially decoded result output 

Decoding with one output at a time 

(Truncated Matrix)-1 
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= × 

partially decoded result output 

Decoding with one output at a time 

(Truncated Matrix)-1 



2016 Storage  Developer Conference. Copyright © 2016 IBM.  All Rights Reserved. 
 

= × 

partially decoded result output 

Decoding with one output at a time 

(Truncated Matrix)-1 
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partially decoded result output 

= × 

Decoding with one output at a time 

(Truncated Matrix)-1 
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9/7/2016 

T inputs 

= ⊕ ⊕ ⊕ ⊕ 

Putting them all together 
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Observation 

 Just as the ciphertext is the sum of a plaintext 
and a keystream, the original input is a sum of 
the T partially decoded results 
This means the sum of the CRCs of the 

partially decoded results is the data’s CRC! 
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9/7/2016 

Original Input 

= ⊕ ⊕ ⊕ ⊕ 

Computing CRCs of Data from fragments 

Original Input 

= ⊕ ⊕ ⊕ ⊕ CRC(          ) CRC(          ) CRC(          ) CRC(          ) CRC(          ) CRC(          ) 
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Exploiting Linearity for New Applications 

45 



2016 Storage  Developer Conference. Copyright © 2016 IBM.  All Rights Reserved. 
 

Secure Rebuilding 

 Linearity also has applications for rebuilding: 
 It enables rebuilding of lost fragments, without 

having to decode the data first 
Saves significant bandwidth in some topologies 

 It can be further extended to allow rebuilding 
without exposing any other fragment 
Sounds paradoxical and impossible, but its not! 
Very useful in cases of secret sharing 
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Conclusions 

 Linear functions leave much room for innovation 
 So far it has provided the ability to: 
Encrypt, decrypt and rekey erasure coded 

data without any network transfer 
Verify integrity of erasure coded data without 

having to download or retrieve it 
Rebuild fragments with minimal network 

transfer and without having to decode data 
47 
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Questions 

48 

Secure and Efficient Rebuilding: 
http://dimacs.rutgers.edu/Workshops/SecureNetworking/Slides/resch.pptx 
 
 

http://dimacs.rutgers.edu/Workshops/SecureNetworking/Slides/resch.pptx
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