

Modern Erasure Codes for Distributed Storage Systems

Srinivasan Narayanamurthy (Srini) NetApp

Everything around us is changing!

The Data Deluge

- Disk capacities and densities are increasing faster than the disk transfer rates
- Increased delay to recover using classical techniques lead to availability exposure

Changing Storage Technologies

- Architectures: Scale-out, Distributed Storage, Cloud, Converged
- □ Media: Flash, NVM, SMR, Tape, et al.
- Features: Geo-distribution, Security, Commodity hardware (Failure is a norm!)

Newer Dimensions of Erasure Codes

- Optimality tradeoffs redefined
- More about this inside...

Organization

Background

- Erasure Codes Timeline
- \Box Classical Codes (*n*, *k*) code

Modern Codes

- Locally Repairable Codes (Codes on Codes)
- Regenerating Codes (Network Codes)

Technical Analysis

- Optimality Tradeoff and Reliability Analysis
- System Requirements and Codes
- Literature & Key Players

Background

Timeline – Classical (n, k) codes

Timeline – Overview

Timeline

Think distributed systems; repairs are expensive !

Modern Erasure Codes

Locally Repairable Codes – Regenerating codes

Regenerating Codes

An Information Flow Graph & Min-Cut Bound

SD₍₁₆)

2016 Storage Developer Conference. © NetApp Inc. All Rights Reserved.

Functional Repair

Technical Analysis

Optimality Tradeoffs – Reliability Analysis – System Requirements

Summary of Codes and their Tradeoffs

	Codes/Family	Tradeoff		
	MDS	Storage overhead	Reliability	
	Replication & Parity	Storage overhead	Reliability	
	Reed-Solomon	Storage overhead	Reliability	
	Near-Optimal	Correction capability	Computational Complexit	
	Fountain	Rate	Probability of Correction	
Q Qg	Codes on Codes	Storage overhead	Repair Degree (Fan-in)	
	Azure (mLRC)	MDS	Maximum Recoverability	
	XORBAS (fLRC)	Locality	Minimum Distance	
<u> </u>	Regenerating	Storage overhead	Repair Bandwidth	
	Local Regenerating	Storage overhead	Reconstruction Cost	

Reliability Analysis

Locally Repairable Codes

SD (16

System Requirements and Example Codes

	System	Properties of the System		Requirements for a Code		Example family/code
		Most Important	Least Important	Most Important	Least Important	
Architecture	General- purpose storage array	Reliability & Performance	Cost	Reliability	Complexity	MSR, SD/STAIR Codes
	Geo-distributed storage	Repair over WAN is expensive	Storage overhead across DR sites	Local repair	Storage overhead	LRC
	Secure Storage	Security	Storage overhead	Faster degraded reads	Repair time	Non- systematic codes; MBR
	Distributed Systems	Parallelism & Availability	Storage overhead	Systematic	Storage overhead	Replication
Workload	Big Data (say, Hadoop)	Large volumes of data	Write latency	Storage overhead	Repair bandwidth	Regenerating (MSR/MBR), systematic

2016 Storage Developer Conference. © NetApp Inc. All Rights Reserved.

15

Literature & Key Players

Theory & Systems

Researchers, Big Players & Startups

SD[®]

Related Areas

- Cross-object Coding
 - Sector & Disk failures PMDS, SD, STAIR Codes
- Other media
 - □ Flash: LDPC, WOM, Multi-write codes; NVM
- Security
 - Dispersal, AONT-RS
- **Cloud**
 - NC-Cloud
- Transformational Codes:
 - Transform encoded data to different parameters as they become hot/cold without decoding and re-encoding

Schrodinger's Code "The condition of any system is unknown until a repair is complete."

2016 Storage Developer Conference. © NetApp Inc. All Rights Reserved.

19