

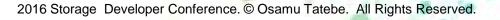
Data Integrity Support for Silent Data Corruption in Gfarm File System

Osamu Tatebe University of Tsukuba

Silent Data Corruption

Data may be corrupted silently

- Transient soft error by cosmic ray, ...
- RAID firmware bug, storage software bug
- RH6.2 & 6.3 XFS regularly truncating files after crash/reboot [RH Bug 845233]



Data-Intensive Science

Big Data Science

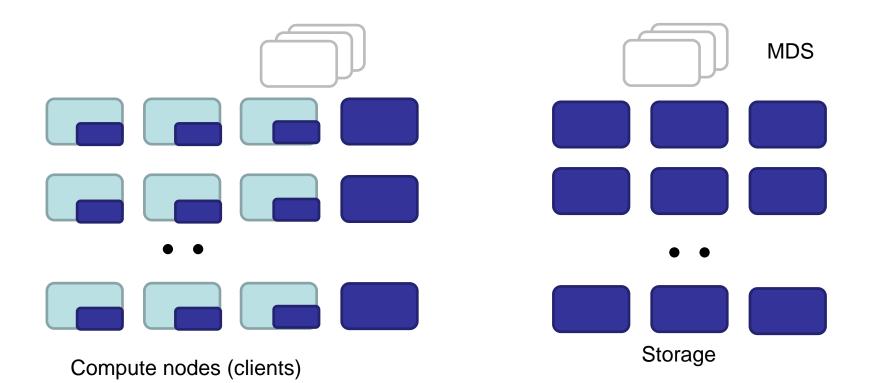
- High energy physics experiment LHC, Belle (PB/year)
- Wide-field imaging Subaru HSC survey, LSST, SDSS (100TB/year)
- Next generation DNA sequencer
- Data assimilation in climate science
- Not only FLOPS but Byte/sec (IO bandwidth) is critical

Scalable performance requirement for Parallel File System

Year	FLO	#core	IO BW	IOPS	Systems
	PS	S			
2008	IP	100K	100GB/s	O(IK)	Jaguar, BG/P
2011	IOP	IM	ITB/s	O(10K)	K, BG/Q
2017	100P	IOM	IOTB/s	O(100K)	
2022	IE	100M	I00TB/s	O(IM)	Performance target

IO BW and IOPS are expected to be scaled-out in terms of # cores or # nodes

Convergence of HPC and Big Data Computing



- Scale-out system R&D such as MapReduce in Data Center
 - Exploit local storage due to poor network bandwidth
 - Tolerate fault since it is norm
- OTOH, MPI and MPI-IO system R&D in HPC using high-performance and high bisection network
- Complex data analysis requirement in data-intensive science imposes the convergence

Extreme Big Data

Converged Architecture

R&D for scale-out system software required

Storage System of Converged Architecture

Three-tier and more

 O(10,000) Local storage
 More than staging
 O(1,000) File cache system
 More than burst buffer
 O(100) Parallel file system

 Data locality should be considered for local storage

SNIA-J Extreme Storage Society of Science Study

- **Established in May, 2016**
- Discuss about next-generation highperformance storage (extreme storage) beyond HPC, Big Data, and Cloud technologies
- Monthly meeting
- Chair: Osamu Tatebe (University of Tsukuba)
- Members: Fujitsu, Hitachi, NEC, Toshiba, HGST Japan, TÜV Rheinland Japan, CTCSP, SCSK, DDN, KEL, TIS Solution Link, ...

Gfarm file system

Most Innovative Use of Storage In Support of Science Award in SC05

- Open Source Software
 - http://sf.net/projects/gfarm

Winner – Large Systems in HPC Storage Challenge in SC06

- 18,000 downloads since March 2007
- Major installations
 - JLDG (7.8 PB, 7 sites, 39 file servers)
 - HPCI Storage (21.9 PB, 3 sites, 97 file servers)
- Research for much more scalability and Nonvolatile Storage

Gfarm file system

Runtime system to exploit data locality

- Pwrake workflow system
- MapReduce, MPI-IO, batch queuing system

oss sukuba

- NPO Tsukuba OSS Technology Support Center
 - http://oss-tsukuba.org/
 - Support for Gfarm file system
 - Gfarm symposium, Gfarm workshop

Software Component of Gfarm File System

- Master-slave MDS
 - Synchronous replication for fault tolerance, and asynchronous replication for disaster recovery
- □ IO server for each local storage
- Client software
 - Gfarm2fs to mount Gfarm file system
 - Gfarm command for replica management and parallel file copy, and POSIX equivalent
 - Gfarm library API in C, C++, Java

Workflow

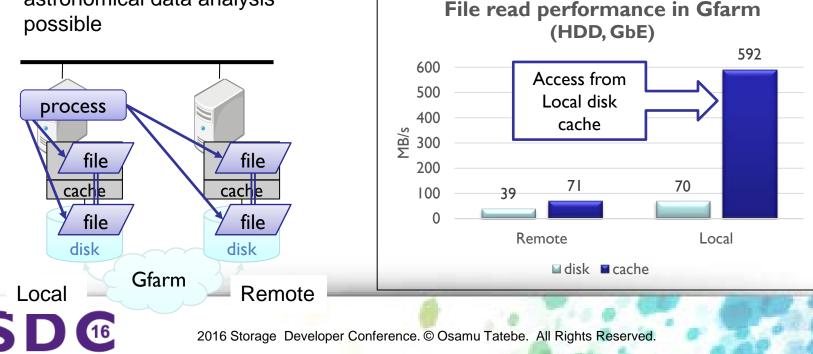
that includes data

dependency

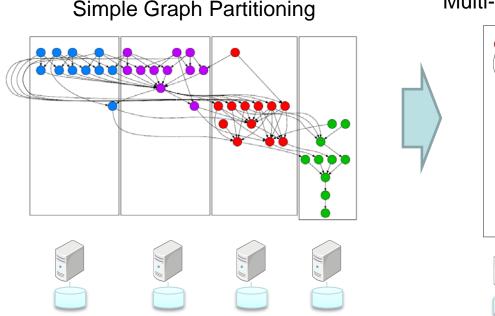
Data Aggregation Often used by data-Data Partitioning intensive applications A collection of tasks Data Aggregation Pipeline mProjectPP mDiffFit mConcatFit mBgModel mBackground mImgTbl mAdd mShrink mJPEG

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

Pwrake: Data-Intensive Workflow System [Tanaka]


Workflow System based on Rake (Ruby make) <u>http://github.com/masa1</u> <u>6/Pwrake/</u>

Rakefile as a workflow language


 Dynamic workflow like Montage astronomical data analysis possible IO-aware task scheduling

Locality-aware scheduling (CCGrid2012)

- Minimize data transfer by multi constraint graph partitioning
- Disk Cache aware (Cluster2014)
 - Maximize disk cache hit ratio and avoid trailing task problem

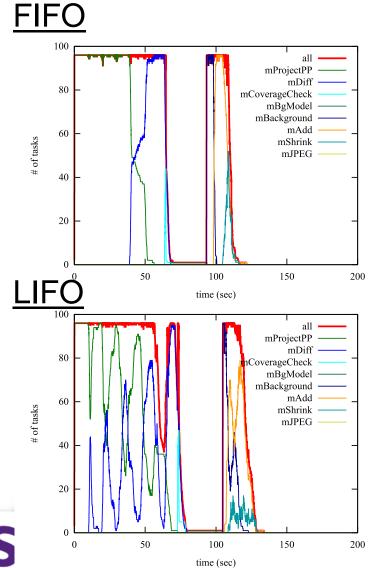
Maximize Locality using Multi-Constraint Graph Partitioning [Tanaka, IEEE CCGrid 2012]

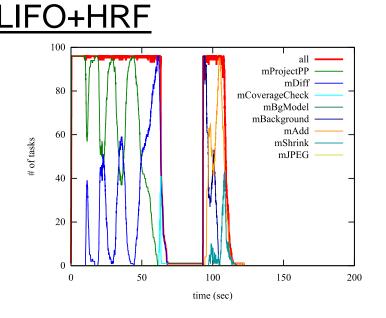
Parallel tasks are unbalanced among nodes

Data movement reduced by 86% Execution time improved by 31%


2016 Storage Developer Conference. © Osamu Tatebe. All Rights Reserved.

Multi-Constraint Graph Partitioning


O'C


Disk Cache Aware Scheduling [Tanaka IEEE Cluster 2014]

switch LIFO and HRF depending on # tasks

Parallel Execution Tasks over Time

- LIFO utilizes disk cache but it has a trailing task problem
- LIFO+HRF utilizes disk cache and solves the trailing task problem

¹⁰ Iference. © Osamu Tatebe. All Rights Reserved.

HPCI Storage

HPCI – High Performance Computing Infrastructure

RIKEN AICS ("K"), NII, Hokkaido, Tohoku, Tsukuba, Tokyo, Titech, Nagoya, Kyoto, Osaka, Kyushu, JAMSTEC, ISM, AIST

10 (~40) Gbps

MDS

13.0 PB

(68 servers)

East site (U Tokyo, Tokyo Tech)

erence. © Osamu raceo, an Nghis Neserved. Picture courtesy by Hiroshi Harada (U Tokyo)

- A 20PB single distributed file system consisting East and West sites
- Single Sign-on by Grid Security Infrastructure (GSI) and user identification by Subject DN
- Parallel file replication among sites
- Parallel file staging to/from each Supercomputer center

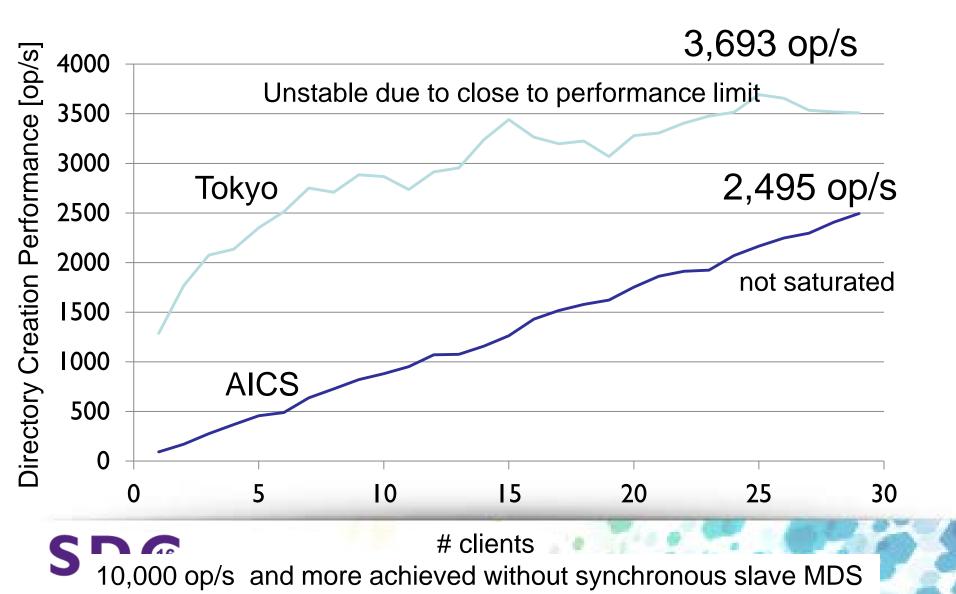
MDS

9.5 PB

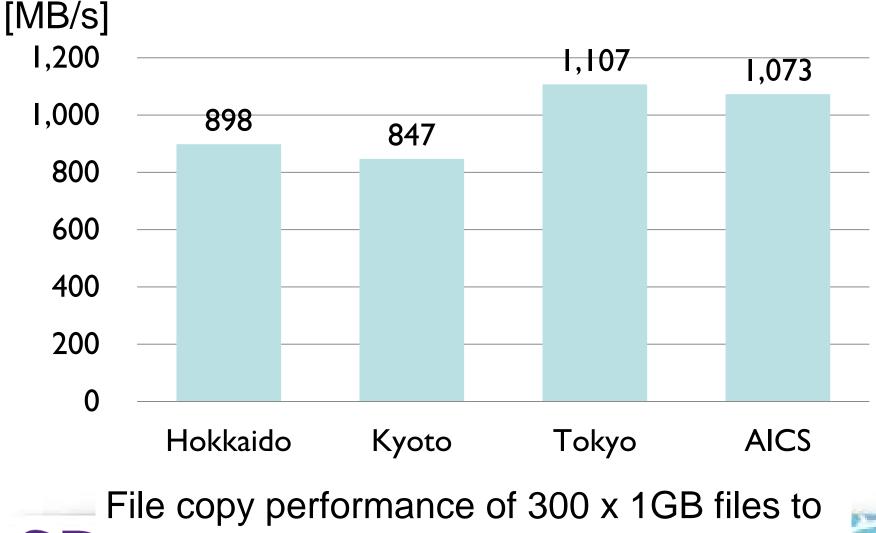
(30 servers)

West site (AICS)

How to Use HPCI Storage


% mount.hpci # mount Update proxy certificate for gfarm2fs timeleft : 167:50:40 (7.0 days) Mount GfarmFS on /gfarm/hp120273/tatebe % cd /gfarm/hp120273/tatebe % gfpcopy –P /work/CSI/tatebe/data . #parallel copy

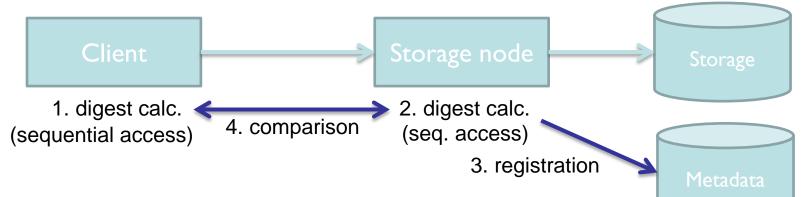
total_throughput: 70.233735 MB/s total_time: 93.311284 sec.


% gfncopy –s 2 data #specify # of file replicas (file replication starts in the background)

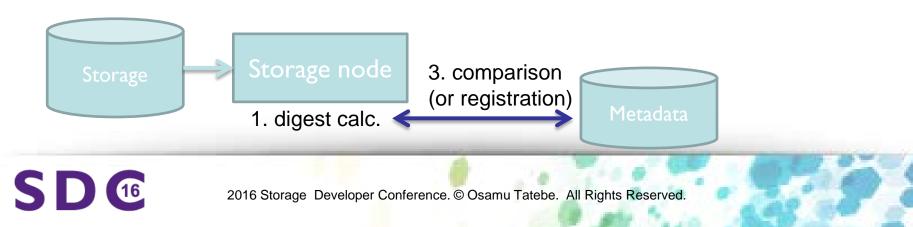
IOPS for Directory Creation

I/O bandwidth of HPCI Storage

D HPCI Storage

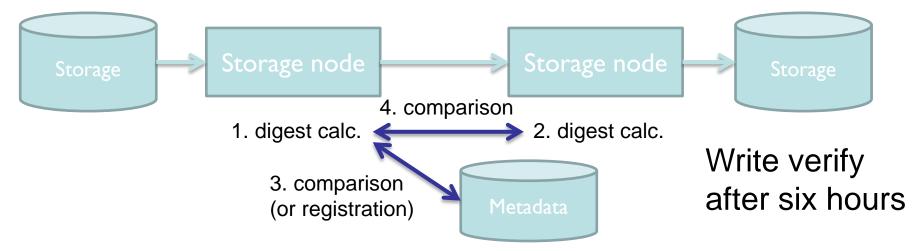

End-to-end Data Integrity

- Silent data corruption in large-scale storage
 No error happens, but damaged
- \rightarrow End-to-end data integrity by Gfarm file system
 - Checksumming by client and storage node
 - Checksumming when reading and replicating data
 - Write verify
 - Corrupted files moved to /lost+found for automatic recovery



Data Integrity in Gfarm (1)

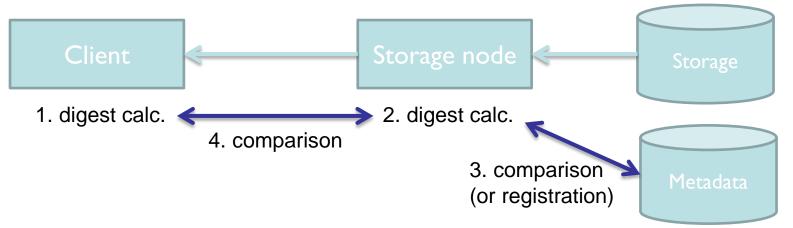
Writing data



Write verify after six hours by default

Data Integrity in Gfarm (2)

Replicating data (just after writing)



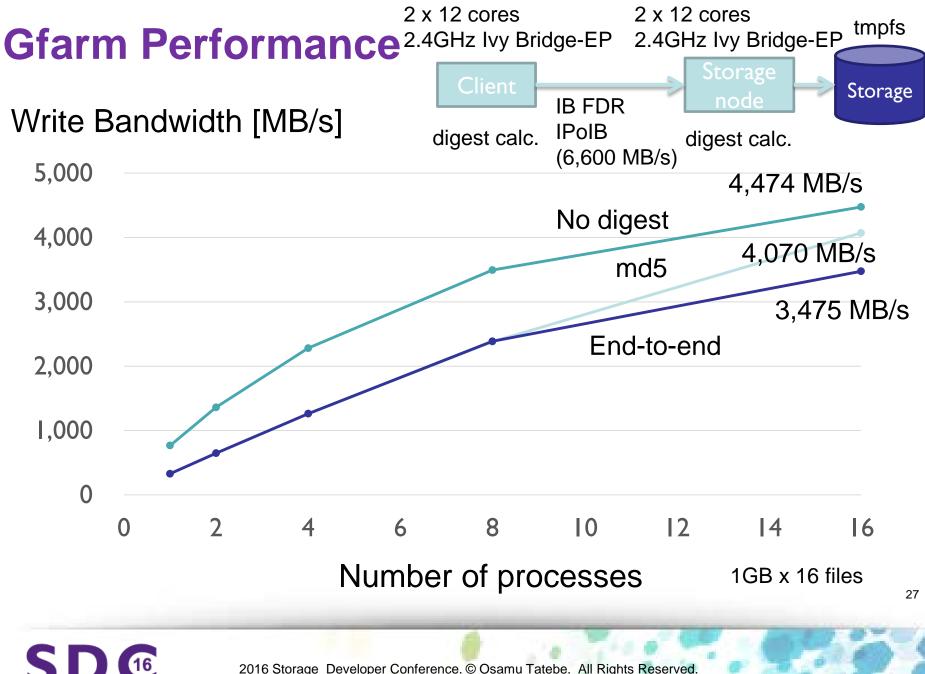
When checksum mismatch happens, moves to /lost+found

Data Integrity in Gfarm (3)

Reading data

When checksum mismatch happens, read returns I/O error, and moves to /lost+found

Prevent from reading corrupted data Automatic repair by file replicas



Openssl digest evaluation

SD₍₆)

	md5	shal	sha256	sha512
2.4GHz Xeon E5-2695 v2 (Ivy Bridge-EP)	541	584	218	337
2.4GHz Xeon E5-2665 (Sandy Bridge-EP)	564	585	176	274
2.4GHz Xeon E5620 (Westmere-EP)	483	417	150	238

8KB block size, MB/s

Case Study in JLDG

□ 7.8 PB, 7 sites, 39 file servers

- Nation-wide storage in Physics community
- 7.2 PB used, 109 M files
- End-to-end data integrity by md5, and write verify enabled
- □ Aug 19~22, 2016
 - Six damaged files found by digest mismatch during write verify and replica creation
 - Still, there is no I/O error

Related work

ZFS

Checksumming in each block

RAID-Z, not only replication, to recover data

Conclusion

Silent data corruption is not rare, but often, in petascale storage

Checksumming is promising

- Gfarm file system detects SDC by write verify, replica creation, file read and (partial) scrubbing
- Native and required feature of file replicas in distant sites can correct it without any waste storage capacity
- SNIA-J Extreme Storage Society of Science Study

Contact

Osamu Tatebe University of Tsukuba tatebe@cs.tsukuba.ac.jp

2016 Storage Developer Conference. © Osamu Tatebe. All Rights Reserved.

31