
BetrFS: A Right-Optimized
Write-Optimized File System

Amogh Akshintala, Michael Bender, Kanchan Chandnani, Pooja Deo, Martin
Farach-Colton, William Jannen, Rob Johnson, Zardosht Kasheff, Bradley C.
Kuszmaul, Prashant Pandey, Donald E. Porter, Leif Walsh, Jun Yuan, Yang

Zhan

Facebook, Farmingdale College, MIT & Oracle, Rutgers, Stony Brook, Two
Sigma, UNC, Williams College

• Sequential reads
• Sequential writes
• Random writes
• File/directory renames
• File deletes
• Recursive scans
• Metadata updates

General-purpose file-systems strive to perform well
on a wide variety of applications

• Sequential reads
• Sequential writes
• Random writes
• File/directory renames
• File deletes
• Recursive scans
• Metadata updates

Achieving good performance on all these
operations is a long-standing challenge

Example: ext4

• Sequential reads
• Sequential writes
• Random writes
• File/directory renames
• File deletes
• Recursive scans
• Metadata updates

Achieving good performance on all these
operations is a long-standing challenge

Logging updates is fast, but
logged data can have little

locality

Example: log-based
file systems

Some operations seem to require a trade-off

sequential reads random writes

 directory scans renames

update-in-place log structured

inodes full-path indexing

BetrFS

Main idea of this talk

Write-Optimized Data Structures (WODS)

● New class of data structures discovered in 90's
– LSM trees [O'Neil, Cheng, Gawlick, & O'Neil '96]

– Bε-trees [Brodal & Fagerberg '03]

– COLAs [Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, & Nelson '07]

– xDicts [Brodal, Demaine, Fineman, Iacono, Langerman, & Munro '10]

● WODS perform inserts/updates/deletes orders-of-
magnitude-faster than in a B-tree
– WODS queries are asymptotically no slower than in a B-tree

BetrFS uses
Bε-trees

How computation works:
•Data is transferred in blocks between RAM and disk.
•The number of block transfers dominates the running time.

Goal: Minimize # of block transfers
•Performance bounds are parameterized by block size B,

memory size M, data size N.

The Disk-Access Machine (DAM) model [Aggarwal & Vitter '88]

RAM Disk

B

B

M

…. children ….

…..

O(logB N)

Example: B-trees

B

B

B B

B B

Insert cost: O (logB N) Lookup cost: O (logB N)

B
…. children ….

O(log√B N)

Bε-trees (ε=1/2)

√B

√B

B−√B

√B

B−√B

√B

B−√B

…..B B

buffer space

Insert cost: O(√B
B−√B

log√B N)=O(logB N

√B) Lookup cost: O(log√B N)=O(logB N)

Range query cost: O(logB N+k /B)

Inserts are
orders-of-magnitude
faster than in a B-tree

Range queries can
run at disk bandwidth

Point queries are
asymptotically as fast

as in a B-tree

11

The search-insert asymmetry

● Inserts are orders-of-magnitude faster than point queries

● But many updates require querying the old value first
● e.g. “Add $10 to rob's account balance”

– OldBalance = query(rob)
– NewBalance = oldBalance + $10
– insert(newBalance)

Point query:

Insert: O(logB N

√B)

O (logB N)

B
…. children ….

O(log√B N)

Upserts: read-modify-write as fast as an insert

√B

√B

B−√B

√B

B−√B

√B

B−√B

…..B B

buffer space

rob: $5

rob:add $10

rob: $15

Bε-tree performance summary

Point query

Insert/delete/upsert

Range query

O(logB N

√B)

O (logB N)

O (logB N+k /B)

Very fast (10K-100K per second)

As fast as a B-tree

To get the best possible performance, we want to do

Inserts, deletes, upserts, and range queries, and avoid point queries.

Near disk
bandwidth

• Maintain two separate Bε-tree indexes:

metadata index: full path > struct stat
data index: (full path, blk#) > data[4096]

• Implications:
 Fast directory scans
Data blocks are laid out sequentially

The BetrFS schema (version 0.1)

Mapping file-system operations to
key-value operations

read

write

metadata update

readdir

mkdir/rmdir

unlink

rename

 range query

 insert/upsert

 upsert

 range query

 insert/delete

*delete each block

*delete then reinsert each block

Operation Implementation

Fast atime updates

Fast directory
traversals

Do not map onto
single key-value

operations

0.1

1

10

100

*lower is better

Tim
e (

s) BetrFS
btrfs
ext4
xfs
zfs

1000 Random 4−byte writes

Small, random, unaligned writes are an order-of-magnitude faster

●1 GiB file, random data

●1,000 random 4-byte writes

●fsync() at end
Log scale

0.17sec vs > 10sec

BetrFS random writes

benefit from Bε-tree
insertion performance

100

1000

10000

100000

0 1M 2M 3M
Files Created

*higher is better

Fil
es

/se
co

nd

BetrFS
btrfs
ext4
xfs
zfs

Small File Creation

Small file creates are an order-of-magnitude faster

●Create 3 million files and write

200-bytes to each

●Balanced directory tree with

fanout 128

Log scale

BetrFS file creates

benefit from Bε-tree
insertion performance

Sequential I/O

0

25

50

75

100

read write
Operation

*higher is better

Mi
B/s

BetrFS
btrfs
ext4
xfs
zfs

1GiB Sequential I/O
• Write random data to file, 10

4K-blocks at a time

• Sequentially read data back

BetrFS sequential reads
benefit from Bε-tree range

query performance

Mostly overhead of
full-data journaling

(we'll fix this
later in the talk)

0

20

40

60

80

Ti
me

 (s
)

BetrFS
btrfs
ext4
xfs
zfs

grep −r

0

5

10

15

20

Tim
e (

s)

GNU Find

Recursive directory traversals

• Recursive scans from root of

Linux 3.11.10 source

• GNU find scans file metadata

• grep –r scans file contents

BetrFS directory traversals

benefit from Bε-tree
range-query performance

Lower is better

About 3-8x faster
than other
file systems

File deletion

0

100

200

300

File Size

Ti
m

e
(s

)

BetrFS

BetrFS Delete Scaling

• Write random data to file,

fsync() it

• Delete file

BetrFS deletes require
O(n) key-value

operations

Lower is better

Directory rename

Lower is better

BetrFS renames require
O(n) key-value

operations

Renames are
orders-of-magnitude

slower than in
ext4

• Sequential reads
• Sequential writes
• Random writes
• File/directory renames
• File deletes
• Recursive scans
• Metadata updates

BetrFS (version 0.1) performance summary

Let's fix these problems

Accelerating rename without slowing
down directory traversals

Full-path indexing yields fast directory scans

Example: grep -r “key” /home/rob/doc/

Disk (physical)Directory Tree (logical)

/home/rob/doc
/home/rob/doc/latex
/home/rob/doc/latex/a.tex
/home/rob/doc/latex/b.tex
/home/rob/doc/bar.c
/home/rob/local

….

….

….

hom
e

rob
local

2.jpg

videodoc

la
te

x 1.m
p4

a.
te

x b.tex
bar.c

disk
head

hom
e

rob
local

2.jpg

videodoc

la
te

x 1.m
p4

a.
te

x b.tex
bar.c

Rename is expensive when using full-path indexing

/home/rob/doc

/home/rob/doc/bar.c
/home/rob/local

….

….

….

Example: mv /home/rob/doc/latex /home/rob

/home/rob/latex/a.tex
/home/rob/latex/b.tex

/home/rob/latex

/home/rob/doc/latex/b.tex
/home/rob/doc/latex/a.tex

Disk (physical)Directory Tree (logical)

/home/rob/doc/latex

la
te

x

The tension between fast rename and fast scanZoning: balancing indirection and locality

Scan cost

Rename cost

Indirection LocalityZones

Implication: Recursive
directory scans only
perform seeks when

crossing zones

BetrFS v0.2 rethinking the schema

● Partition file system into zones

● Use full-path indexing within zones

● Use inodes between zones

Zone: a subtree of the directory hierarchy

hom
e

rob
local

2.jpg

videodoc

1.m
p4la

te
x

a.
te

x b.tex
bar.c

Zone 1
Zone 2Zone 0

BetrFS v0.2 rethinking the schema
Moving the root of a zone is cheap

hom
e

rob
local

2.jpg

videodoc

1.m
p4la

te
x

a.
te

x b.tex
bar.c

Zone 1
Zone 2

Example:
mv /home/rob/video/1.mp4 /home/rob/doc

1.m
p4

Zone 0

BetrFS v0.2 rethinking the schema

hom
e

rob
local

2.jpg

videodoc

la
te

x

a.
te

x b.tex
bar.c

Zone 1
Zone 2

Example:
mv /home/rob/doc/latex /home/rob/latex

1.m
p4

Zone 0

Renaming a subtree of a zone requires copying

la
te

x

BetrFS v0.2 rethinking the schema

hom
e

rob
local

2.jpg

videodoc
a.

te
x b.tex

bar.c

Zone 1
Zone 2

1.m
p4

Zone 0

Managing zone sizes

la
te

x

Large zones → fast directory scans
Small zones → fast renames

We can keep zone sizes in a “sweet
spot” by splitting large zones and
merging small zones

How big should zones be?

BetrFS-0.2 uses 512KB zones to balance
rename and scan performance

Cost of renaming
root of a zone

Cost of renaming
via copy

BetrFS 0.2 rename performance

21
 s

ec
on

ds

Rename linux source tree

Rename performance is
comparable to other

file systems

Performing sequential writes at disk
bandwidth and with full data

journaling semantics

BetrFS version 0.1 writes everything twice

34

(k2,)

(k1,)

root

a b

root’

b’

Logtime

insert(k2,)

v2

v1

v2insert(k1,)v1

BetrFS version 0.2: late-binding journal

35

(k2,)

unbound(k1,)

root

a b

root’

b’

Logtime

insert(k2,)

v2

v1

v2
Unbound-
insert(k1) . . . bind(,)

Why don't we use late-binding for small writes?

● Reason 1:

– Late-binding requires writing out a large (e.g. 4MB) node

– For small writes, this is huge write-amplification

– It's more efficient to make small writes durable by simply logging them
● Reason 2:

– Small, random writes get written to disk several times as they get
flushed down the Bε-tree

– So writing them to the log is not a big extra cost

Late-binding journal:
performance
evaluation

Fast sequential writes
with full data journaling

Sequential write

Rangecast delete

Delete /foo/*

/bar/
/fo

o/a /foo/x

/goo/a

Garbage
collected

File deletions require
inserting a single message

and
enable efficient

garbage collection

Rangecast delete performance evaluation

Constant latency,
about 30% faster than ext4

File delete

Is BetrFS still fast at other
operations?

BetrFS still performs
random writes orders of
magnitude faster than

other file systems

BetrFS still has metadata
updates almost 100x

faster than ext4

Zone splits

What about real application
performance?

git clone git diff

Macrobenchmark: git

Performance comparable
to other file systems Recursive scan performance

pays off in real applications

Macrobenchmark: dovecot imap maildir workload

Payoff of improved delete and
rename performance

• Sequential reads
• Sequential writes
• Random writes
• File/directory renames
• File deletes
• Recursive scans
• Metadata updates

BetrFS (version 0.2) performance summary

Conclusion
● Write-optimized data structures can enable us to
overcome long-standing file-system design trade-offs

● Write-optimized file systems can offer across-the-
board top-of-the-line performance

● Write-optimization creates a need/opportunity to revisit
many file system design issues

● Code available at
betrfs.org

SSD performance preview

Still work to do

6x speedup

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	File System Bε Tree
	Operation Roundup
	Slide 16
	Small file creates are an order-of-magnitude faster
	Sequential I/O
	BetrFS forgoes indirection for locality: fast directory scans
	BetrFS forgoes indirection for locality: delete, rename O(n)
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	The tension between fast rename and fast scan
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	BetrFS v1 writes everything twice
	BetrFS v2: late-binding journal
	Slide 36
	Fixing sequential write
	Slide 38
	Fixing delete
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

