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•  Sequential reads
•  Sequential writes
•  Random writes
•  File/directory renames
•  File deletes
•  Recursive scans
•  Metadata updates

General-purpose file-systems strive to perform well 
on a wide variety of applications



•  Sequential reads
•  Sequential writes
•  Random writes
•  File/directory renames
•  File deletes
•  Recursive scans
•  Metadata updates

Achieving good performance on all these 
operations is a long-standing challenge

Example: ext4



•  Sequential reads
•  Sequential writes
•  Random writes
•  File/directory renames
•  File deletes
•  Recursive scans
•  Metadata updates

Achieving good performance on all these 
operations is a long-standing challenge

Logging updates is fast, but 
logged data can have little 

locality

Example: log-based 
file systems



Some operations seem to require a trade-off

sequential reads  random writes

 directory scans renames

update-in-place log structured 

inodes full-path indexing



BetrFS

Main idea of this talk



Write-Optimized Data Structures (WODS)

● New class of data structures discovered in 90's
– LSM trees [O'Neil, Cheng, Gawlick, & O'Neil '96]

– Bε-trees [Brodal & Fagerberg '03]

– COLAs [Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, & Nelson '07]

– xDicts [Brodal, Demaine, Fineman, Iacono, Langerman, & Munro '10]

● WODS perform inserts/updates/deletes orders-of-
magnitude-faster than in a B-tree
– WODS queries are asymptotically no slower than in a B-tree

BetrFS uses
Bε-trees



How computation works: 
•Data is transferred in blocks between RAM and disk. 
•The number of block transfers dominates the running time. 

Goal: Minimize # of block transfers
•Performance bounds are parameterized by block size B, 

memory size M, data size N.

The Disk-Access Machine (DAM) model [Aggarwal & Vitter '88]

RAM Disk
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B
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Example: B-trees
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Insert cost: O ( logB N ) Lookup cost: O ( logB N )
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Bε-trees (ε=1/2)
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buffer space

Insert cost: O( √B
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log√B N )=O( logB N

√B ) Lookup cost: O(log√B N )=O(logB N )

Range query cost: O(logB N+k /B)

Inserts are 
orders-of-magnitude 
faster than in a B-tree

Range queries can
run at disk bandwidth

Point queries are 
asymptotically as fast 

as in a B-tree
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The search-insert asymmetry

● Inserts are orders-of-magnitude faster than point queries

● But many updates require querying the old value first
● e.g. “Add $10 to rob's account balance”

– OldBalance = query(rob)
– NewBalance = oldBalance + $10
– insert(newBalance)

Point query: 

Insert: O( logB N

√B )

O (logB N )



B
….    children ….

O(log√B N )

Upserts: read-modify-write as fast as an insert
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√B
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…......................................................B B

buffer space

rob: $5

rob:add $10

rob: $15



Bε-tree performance summary

Point query

Insert/delete/upsert

Range query

O( logB N

√B )

O ( logB N )

O (logB N+k /B )

Very fast (10K-100K per second)

As fast as a B-tree

To get the best possible performance, we want to do 

Inserts, deletes, upserts, and range queries, and avoid point queries.

Near disk 
bandwidth



• Maintain two separate Bε-tree indexes:

metadata index:     full path > struct stat
data index:            (full path, blk#) > data[4096]

• Implications:
 Fast directory scans
Data blocks are laid out sequentially

The BetrFS schema (version 0.1)



Mapping file-system operations to 
key-value operations

read

write

metadata update

readdir

mkdir/rmdir

unlink

rename

 range query

 insert/upsert

 upsert

 range query

 insert/delete

*delete each block

*delete then reinsert each block 

Operation                                        Implementation

Fast atime updates

Fast directory
traversals

Do not map onto
single key-value 

operations
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1000 Random 4−byte writes

Small, random, unaligned writes are an order-of-magnitude faster

●1 GiB file, random data

●1,000 random 4-byte writes

●fsync() at end
Log scale

0.17sec vs > 10sec

BetrFS random writes 

benefit from Bε-tree
insertion performance
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Small File Creation

Small file creates are an order-of-magnitude faster

●Create 3 million files and write 

200-bytes to each

●Balanced directory tree with 

fanout 128

Log scale

BetrFS file creates 

benefit from Bε-tree
insertion performance



Sequential I/O
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1GiB Sequential I/O
• Write random data to file, 10 

4K-blocks at a time

• Sequentially read data back

BetrFS sequential reads 
benefit from Bε-tree range 

query performance

Mostly overhead of 
full-data journaling  

(we'll fix this 
later in the talk)
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Recursive directory traversals

• Recursive scans from root of 

Linux 3.11.10 source 

• GNU find scans file metadata

• grep –r scans file contents

BetrFS directory traversals 

benefit from Bε-tree
range-query performance

Lower is better

About 3-8x faster
than other 
file systems



File deletion

0

100

200

300

File Size

Ti
m

e 
(s

)

BetrFS

BetrFS Delete Scaling

• Write random data to file, 

fsync() it

• Delete file

BetrFS deletes require 
O(n) key-value 

operations

Lower is better



Directory rename

Lower is better

BetrFS renames require 
O(n) key-value 

operations

Renames are
orders-of-magnitude

slower than in 
ext4



•  Sequential reads
•  Sequential writes
•  Random writes
•  File/directory renames
•  File deletes
•  Recursive scans
•  Metadata updates

BetrFS (version 0.1) performance summary

Let's fix these problems



Accelerating rename without slowing 
down directory traversals



Full-path indexing yields fast directory scans

Example: grep -r “key” /home/rob/doc/

Disk (physical)Directory Tree (logical)

/home/rob/doc
/home/rob/doc/latex
/home/rob/doc/latex/a.tex
/home/rob/doc/latex/b.tex
/home/rob/doc/bar.c
/home/rob/local

….

….
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Rename is expensive when using full-path indexing

/home/rob/doc

/home/rob/doc/bar.c
/home/rob/local

….

….

….

Example:  mv /home/rob/doc/latex /home/rob

/home/rob/latex/a.tex
/home/rob/latex/b.tex

/home/rob/latex

/home/rob/doc/latex/b.tex
/home/rob/doc/latex/a.tex

Disk (physical)Directory Tree (logical)

/home/rob/doc/latex

la
te

x



The tension between fast rename and fast scanZoning: balancing indirection and locality

Scan cost

Rename cost

Indirection LocalityZones



Implication: Recursive 
directory scans only 
perform seeks when 

crossing zones

BetrFS v0.2 rethinking the schema

● Partition file system into zones

● Use full-path indexing within zones

● Use inodes between zones

Zone: a subtree of the directory hierarchy
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BetrFS v0.2 rethinking the schema
Moving the root of a zone is cheap
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Example:
mv  /home/rob/video/1.mp4  /home/rob/doc

1.m
p4

Zone 0



BetrFS v0.2 rethinking the schema
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mv  /home/rob/doc/latex  /home/rob/latex
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Renaming a subtree of a zone requires copying

la
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BetrFS v0.2 rethinking the schema
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Managing zone sizes

la
te

x

Large zones → fast directory scans
Small zones → fast renames

We can keep zone sizes in a “sweet 
spot” by splitting large zones and 
merging small zones



How big should zones be?

BetrFS-0.2 uses 512KB zones to balance 
rename and scan performance

Cost of renaming 
root of a zone

Cost of renaming 
via copy



BetrFS 0.2 rename performance

21
 s

ec
on

ds

Rename linux source tree

Rename performance is
comparable to other 

file systems



Performing sequential writes at disk 
bandwidth and with full data 

journaling semantics



BetrFS version 0.1 writes everything twice
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BetrFS version 0.2: late-binding journal
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Why don't we use late-binding for small writes?

● Reason 1:

– Late-binding requires writing out a large (e.g. 4MB) node

– For small writes, this is huge write-amplification

– It's more efficient to make small writes durable by simply logging them
● Reason 2:

– Small, random writes get written to disk several times as they get 
flushed down the Bε-tree

– So writing them to the log is not a big extra cost



Late-binding journal:
performance 
evaluation

Fast sequential writes
with full data journaling

Sequential write



Rangecast delete

Delete /foo/*

/bar/
/fo

o/a /foo/x

/goo/a

Garbage
collected

File deletions require 
inserting a single message

and
enable efficient 

garbage collection



Rangecast delete performance evaluation

Constant latency,
about 30% faster than ext4

File delete



Is BetrFS still fast at other 
operations?



BetrFS still performs
random writes orders of
magnitude faster than 

other file systems

BetrFS still has metadata
updates almost 100x

faster than ext4

Zone splits



What about real application 
performance?



git clone git diff

Macrobenchmark: git

Performance comparable 
to other file systems Recursive scan performance

pays off in real applications



Macrobenchmark: dovecot imap maildir workload

Payoff of improved delete and
rename performance



•  Sequential reads
•  Sequential writes
•  Random writes
•  File/directory renames
•  File deletes
•  Recursive scans
•  Metadata updates

BetrFS (version 0.2) performance summary



Conclusion
● Write-optimized data structures can enable us to 
overcome long-standing file-system design trade-offs

● Write-optimized file systems can offer across-the-
board top-of-the-line performance

● Write-optimization creates a need/opportunity to revisit 
many file system design issues

● Code available at
betrfs.org



SSD performance preview

Still work to do

6x speedup
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