Environmental Conditions and Disk Reliability in Free-cooled Datacenters

Ioannis Manousakis, Sriram Sankar, Gregg McKnight,

Thu D. Nguyen, and Ricardo Bianchini

Problem Statement

- Datacenters are costly and consume lots of energy
- Evolving cooling technologies in datacenters
 - Chiller-based (traditional)
 - Water-side economized
 - <u>Air-side economized (aka free cooling)</u>
- Unexplored tradeoff: environmentals, reliability, cost

a) Chiller-based Cooling

b) Free Cooling

a) Chiller-based Cooling

b) Free Cooling

> Free cooling: may expose servers to harsh environmentals

Technology Characteristics

Cooling technologies:

- o Chiller-based
- Water-side economized
- Free cooling

Prior Work

Hard disk failure studies in datacenters
 O Pinheiro[FAST'07], El-Sayed[SIGMETRICS'12], Sankar[ToS'13]

Focused on temperature and temperature variation
 Chiller-based (traditional) datacenters

> What's new with our work

- Three types of cooling
- Wider (more aggressive) environmental envelopes
- Primary focus on (relative) humidity

Contributions and Roadmap

1. Impact of environmentals on disk failure rates

- 2. Root causes
- 3. Cooling vs reliability vs cost tradeoffs
- 4. Modeling of failure rates
- 5. Design considerations

Methodology

• Collect large traces from hard disks

- o Nine datacenters (2-4 years), 1M HDDs
- All types of Microsoft datacenters

Tag	Technology	Population	
CD1	Chiller	117K	
CD2	Water-side	146K	
CD3	Free-Cooled	24K	
HD1	Chiller	16K	
HD2	Water-side	100K	
HH1	Free-Cooled	168K	
HH2	Free-Cooled	213K	
HH3	Free-Cooled	124K	
HH4	Free-Cooled	161K	
Total		1.07M	

Methodology

- Collect extensive hard disk operation traces
 - Logged and archived by Microsoft Autopilot
 - 1. I/O communication faults (dead controller / TX-RX error)
 - 2. Behavioral SMART faults (read-write, sectors, seek, etc.)
 - 3. Age-related SMART faults (max hours, on-off cycles, etc.)

Methodology

- Collect extensive hard disk operation traces
 - Logged and archived by Microsoft Autopilot
 - 1. I/O communication faults (dead controller / TX-RX error)
 - 2. Behavioral SMART faults (read-write, sectors, seek, etc.)
 - 3. Age-related SMART faults (max hours, on-off cycles, etc.)

Results

• Annual Failure Rate summary

cold

- 1. Dry datacenters exhibit low AFRs (1.5 2.3%)
- 2. Humid datacenters exhibit higher AFRs (3.1 5.4%)

	DC Tag	Technology	AFR	Increase wrt 1.5%
	CD1	Chiller	1.5%	0%
CD1	CD2	Water-side	2.1%	40%
CDI	CD3	Free-Cooled	1.8%	20%
dry	HD1	Chiller	2.0%	33%
	HD2	Water-side	2.3%	53%
	HH1	Free-Cooled	3.1%	107%
	HH2	Free-Cooled	5.1%	240%
	HH3	Free-Cooled	5.1%	240%
	HH4	Free-Cooled	5.4%	260%

Annual Failure Rate (AFR) Results

1. Dry datacenters show low AFRs (1.5 - 2.3%)

CD1

dry

cold

2. Humid datacenters show higher AFRs (3.1 - 5.4%)

DC Tag	Technology	AFR	Increase wrt 1.5%
CD1	Chiller	1.5%	0%
CD2	Water-side	2.1%	40%
CD3	Free-Cooled	1.8%	20%
HD1	Chiller	2.0%	33%
HD2	Water-side	2.3%	53%
HH1	Free-Cooled	3.1%	107%
HH2	Free-Cooled	5.1%	240%
HH3	Free-Cooled	5.1%	240%
HH4	Free-Cooled	5.4%	260%

Annual Failure Rate (AFR) Results

1. Dry datacenters show low AFRs (1.5 - 2.3%)

CD1

dry

cold

2. Humid datacenters show higher AFRs (3.1 - 5.4%)

DC Tag	Technology	AFR	Increase wrt 1.5%
CD1	Chiller	1.5%	0%
CD2	Water-side	2.1%	40%
CD3	Free-Cooled	1.8%	20%
HD1	Chiller	2.0%	33%
HD2	Water-side	2.3%	53%
HH1	Free-Cooled	3.1%	107%
HH2	Free-Cooled	5.1%	240%
HH3	Free-Cooled	5.1%	240%
HH4	Free-Cooled	5.4%	260%

Contributions and Roadmap

1. Impact of environmentals on disk failure rates

2. <u>Root causes</u>

- 3. Cooling vs reliability vs cost tradeoffs
- 4. Modeling of failure rates
- 5. Design considerations

Root Causes: Error Breakdown

Dry DCs → Bad sector count (mechanical): ~50-60%
Humid DCs → Controller (connectivity): ~60%

Root Causes: Temporal Clustering

- Significant temporal clustering on HH1
- No temporal clustering on HD1

Root Causes: Temporal Clustering

- Significant temporal clustering on HH1
- No temporal clustering on HD1

Data suggests a lifetime failure process

• Failure rate regressions for <u>HH1</u>

- 1. Discover trends variables that change together
- 2. Split into 4 groups P1 P4 (total population = 170K)

coefficient b

 $y = a^*\!x + b$

 $y = a^* e^{(b^* x)}$

• Failure rate regressions for <u>HH1</u>

- 1. Discover trends variables that change together
- 2. Split into 4 groups P1 P4 (total population = 170K)

Popul. Temp. RH CoV CoV RH Temp. 5.1*10-5 1.2*10-4 -7.9*10-3 **P1** 30.1 -6.5*10-3 -1.9*10-5 -9.0*10-3 256 $1.0*10^{-4}$ $-3.7*10^{-3}$ **P2** 1.4*10-3 $2.1*10^{-4}$ $-4.9*10^{-2}$ $-4.4*10^{-2}$ **P3** 23.3 P4 19.6 $1.7*10^{-3}$ $4.4*10^{-4}$ -1.3*10-1 -8.0*10-2

coefficient b

 $y = a^* e^{(b^* x)}$

 $y = a^*x + b$

- Failure rate regressions for **HH1**
 - 1. Discover trends variables that change together
 - 2. Split into 4 groups P1 P4 (total population = 170K)

<u>RH% seems to have the strongest impact</u>

• Failure rate correlations for **HH1**

- 1. Discover trends variables that change together
- 2. Correlation matrix

• Failure rate correlations for **HH1**

- 1. Discover trends variables that change together
- 2. Correlation matrix

• Failure rate correlations for **HH1**

- 1. Discover trends variables that change together
- 2. Correlation matrix

Contributions and Roadmap

- 1. Impact of environmentals on disk failure rates
- 2. Root causes

3. Cooling vs reliability vs cost tradeoffs

- 4. Modeling of failure rates
- 5. Design considerations

Cooling-Related Cost Tradeoffs

Cooling technologies vs costs

• Free cooling results in higher HDD costs

• Operator will pay the extra HDD costs (or warranties)

Cooling-Related Cost Tradeoffs

Cooling technologies vs costs

• Free cooling results in higher HDD costs

• Operator will pay the extra HDD costs (or warranties)

Cooling-Related Cost Tradeoffs

Cooling technologies vs costs

• Free cooling results in higher HDD costs

• Operator will pay the extra HDD costs (or warranties)

Summary of Observations

- 1. Failures correlate with environmentals
 - RH appears to be the dominant effect

2. Impact different parts of the HDD

- Temperature → mechanical & controller
- RH → controller

Summary of Observations

- 1. Failures correlate with environmentals
 - RH appears to be the dominant effect

2. Impact different parts of the HDD

- Temperature → mechanical & controller
- RH → controller

3. Failures do not occur instantly

- Match a lifetime model
- Lifetime is "consumed" depending on environmentals
- 4. Free cooling still cheaper, despite the higher AFRs

Contributions and Roadmap

- 1. Impact of environmentals on disk failure rates
- 2. Root causes
- 3. Cooling vs reliability vs cost tradeoffs
- 4. <u>Modeling of failure rates</u>
- 5. Design considerations

Model Construction

• Estimate AFRs

• Various server and datacenter designs/conditions/locations

Model Construction

• Estimate AFRs

• Various server and datacenter designs/conditions/locations

1. Modeling HDD mechanical degradation

$$AF_{T} = e^{\frac{E_{a}}{k} \cdot (\frac{1}{\overline{T_{b}}} - \frac{1}{\overline{T_{e}}})}$$

2. Modeling corrosion

• Extension of Arrhenius equation

• Accounts for combined temperature and RH effects

$$CR(\overline{T}, \overline{RH}) = \text{const} \cdot e^{\left(\frac{-E_a}{k \cdot \overline{T}}\right)} \cdot e^{\left(b \cdot \overline{RH}\right) + \left(\frac{c \cdot \overline{RH}}{k \cdot \overline{T}}\right)}$$

Model Construction

• Lifetime Acceleration Factor (AF)

• Compared to a baseline (AFR=1.5% @25C and 50% RH)

• AF₁: Temperature - AF₂: RH and Temperature

Validation

- Collect hourly environmentals in other datacenters
- Use the model constructed in **P1** to predict failure rates
- Validated with P2, P3, P4, and CD3, HD1 (within 5%)

Contributions and Roadmap

- 1. Impact of environmentals on disk failure rates
- 2. Root causes
- 3. Cooling vs reliability vs cost tradeoffs
- 4. Modeling of failure rates
- 5. Design considerations

• Disk placement affects HDD failure rates

• Disk placement affects HDD failure rates

• Disk placement affects HDD failure rates

Disk at the front

- Low Temp
- High RH%

• Disk placement affects HDD failure rates

Disk at the back

- High Temp
- Low RH%

• Disk placement affects HDD failure rates

Disk at the side

- Var. Temp
- Var. RH%

Conclusions

- Explored HDD reliability vs environmentals
 - 9 datacenters with 3 cooling technologies, 1M disks
 - AFRs impacted by environmentals, especially high RH
 - Tradeoff favors free cooling: costs down, despite higher AFRs

Developed an accurate model from real failure data Combines corrosion and temperature

Learned lessons

- Server layout has a significant impact on HDD AFRs
- More lessons in the paper

THE STATE UNIVERSITY OF NEW JERSEY

