Using SPEC SFS® with the SNIA Emerald Program for EPA Energy Star Data Center Storage Program

Vernon Miller – IBM
Nick Principe – Dell EMC
Agenda

- Background on SNIA Emerald/Energy Star for block
- Introduce NAS/File test addition; introduce SFS 2014
- Testbed configuration and measurement points
 - Test procedure
- A look at some real data and the derivation of the metrics
Green Preamble

- Increased regulatory and societal pressures to lower energy footprints
- Growing awareness of environmental impact of IT equipment
- Rising energy cost for power and cooling is a large part of the cost of ownership
- Data centers cannot readily add additional power or cooling capacity

http://www.snia.org/emerald/training/July2014
Overview: Green Storage, Energy Star and SNIA Emerald Program
EPA ENERGY STAR® for Data Center Storage

- Energy Star certification program for storage systems.
- EPA partnered with SNIA’s Green Storage Initiative (GSI) to develop technical specification and requirements.
SNIA Green Activities

- Green Storage Initiative (GSI)
 - Market green storage and manage the Emerald™ Program
 - Research, educate, leverage SNIA resources, provide direction
- Green Technical Working Group (GTWG)
 - Technical body of storage experts developing green storage specifications, white papers, tutorials, technical guidance
 - Develop the SNIA Emerald™ Power Efficiency Measurement Specification (currently 2.1.1) and “how to” User Guide for it
- Emerald™ Program
 - Promote use of the SNIA Emerald™ Specification methodology and test results
 - Help drive green storage decisions for both vendors and customer

http://www.snia.org/emerald/training/July2014
Overview: Green Storage, Energy Star and SNIA Emerald Program
SNIA Green Storage Initiative (GSI)

- Establish and maintain the SNIA Emerald™ Program for SNIA Emerald™ Energy Efficiency Measurement and conduct training of SNIA Emerald™ testers and industry stakeholders
- Educate the IT industry, vendor community and regulatory bodies on techniques to conserve energy for enterprise storage environments
- Provide external advocacy and support of the technical work of the SNIA Green Storage Technical Working Group (TWG)
- Provide input to the SNIA Green Storage TWG on requirements for green storage measurement specifications, metrics and standards
- Establish and maintain cross-industry relationships and alliances to coordinate and advance data center energy efficiency related programs, test and measurement methods, and standards

http://www.snia.org/forums/green
SNIA Green Technical Working Group

- Technical body working on green storage metrics and standards
- Gets direction from GSI
- Writes the SNIA Emerald™ Power Efficiency Measurement Specification and related documents
- Supports the Emerald™ Program
 - White papers
 - Tutorials
 - Training
- Works with regulatory agencies (i.e. EPA) on green storage specifications
SNIA Emerald™ Program Overview

- The purpose is to provide public access to storage system power usage and efficiency through use of a well-defined testing procedure, and additional information related to system power.
- Provides a standardized way of reporting vendor-performed test results that characterize the several aspects of storage system energy usage and efficiency.
- Power Efficiency Measurement Specification
 - Taxonomy
 - Measurement
 - Metrics
Emerald™ Power Efficiency Measurement Specification

- Market Taxonomy
 - Simplifies comparisons and regulatory efforts

- Measurement
 - SUT configuration requirements
 - Block level I/O (Vdbench, COMgen)
 - Active state, idle state, hot bands
 - Power/environmental measurements

- Metrics
 - Primary metrics ratios of performance per watt
 - Random access (Transactional) of the data per unit of power
 - Sequential access (Streaming) of the data per unit of power
 - Storage Capacity per unit of power
 - Secondary metrics
 - Capacity Optimization verification, i.e. existence test
Emerald™ Power Efficiency Measurement Specification – Market Taxonomy

- Classifies storage systems in terms of operational profile and supported features
- Simplifies comparisons and regulatory efforts

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Online</td>
</tr>
<tr>
<td>Access Pattern</td>
<td>Random/Sequential</td>
</tr>
<tr>
<td>MaxTTFD (t)</td>
<td>t < 80 ms</td>
</tr>
<tr>
<td>User Accessible Data</td>
<td>Required</td>
</tr>
</tbody>
</table>
Emerald™ Power Efficiency Measurement Specification – I/O and Measurement

- Standard input voltages and datacenter conditions required
- Prefill Test
- SUT Conditioning Test
- Active Test (Vdbench)
 - Hot Band
 - Random Write
 - Random Read
 - Sequential Write
 - Sequential Read
- Ready Idle Test
- Capacity Optimization Test (comgen)
Emerald™ Power Efficiency Measurement Specification – Power Metrics

- Primary metrics ratios of performance / watt
 - Random access (Transactional) of the data per unit of power
 - Input Output per Second per Watt (IOPS/W)
 - Sequential access (Streaming) of the data per unit of power
 - Mebibyte per Second per Watt (MiBPS/W)
 - Storage Capacity per unit of power
 - Gigabyte per Watt (GB/W)

- Secondary metrics
 - Capacity Optimization verification, i.e. existence test
 - Six techniques that reduce the number of storage devices to store the same amount of data thus reducing the power required to store the data
SNIA Emerald™ Test Data Submission

- SNIA Emerald Program
 - Record results in SNIA Emerald Test Data Report (TDR)
 - Complete Test Submission Order Form

- EPA ENERGY STAR
 - EPA recognized lab must perform tests
 - Obtain certification from an EPA recognized Certification Body
Disclaimer

- The SNIA Emerald specification with file-access support, as represented in this presentation, is pre-release; the benchmark framework, workloads, and results and reporting structure are still under internal SPEC and SNIA review and may change before final release of SNIA Emerald Specification version 3.0.
NAS/File Addition to Specification

- Version 3 of SNIA Emerald Power Efficiency Measurement Specification
 - Addresses both block and file access
 - New workloads and toolkit for file access testing
 - SPEC SFS® 2014
 - New methodology for determining power metrics for file access
 - Expected rollout starting 1H17
SPEC
Standard Performance Evaluation Corporation

- The Standard Performance Evaluation Corporation (SPEC) is a non-profit corporation formed to establish, maintain and endorse a standardized set of relevant benchmarks that can be applied to the newest generation of high-performance computers. SPEC develops benchmark suites and also reviews and publishes submitted results from member organizations and other benchmark licensees.

- www.spec.org

- SPEC and SPEC SFS are registered trademarks of the Standard Performance Evaluation Corporation. Additional product and service names mentioned herein may be the trademarks of their respective owners.
Why SPEC SFS 2014?

- SPEC SFS 2014 is a Storage Solution Benchmark
 - Realistic, Solution-based, Industry-standard workloads
 - DATABASE, SWBUILD, VDA, VDI
 - Workloads based on traces, like previous SFS 2008
 - Modern scenarios based on standard solutions
 - Advanced measurement – quality of service
 - Ops and latency don’t tell the whole story → business metrics
- Ability to measure broad range of products and configurations
 - Traditional (HDD), Hybrid, All-Flash

- Key reasons SNIA Emerald is using SFS 2014
 - Vendors likely already running SFS 2014 in-house
 - Workloads already agreed upon by multiple vendors
 - Robust workload generator for file access
The SPEC SFS 2014 Workloads

- DATABASE
 - Simulates OLTP database consolidation
 - Measured in # of concurrent DATABASES

- SWBUILD
 - Simulates large software project compilation
 - Measured in # of concurrent BUILDs

- VDA
 - Simulates acquisition of streaming data
 - Measured in # of concurrent STREAMS

- VDI
 - Simulates heavy steady-state VDI workload
 - Measured in # of concurrent DESKTOPS

For more details, see:
- The SPEC SFS 2014 website http://www.spec.org/sfs2014
File vs Block Configurations

Block Access

- Block I/O generator: vdbench
 - Custom workloads
- No client side caching
- Minimal impact to power metrics due to load generators
File vs Block Configurations

- File I/O generator: SPEC SFS 2014
 - 4 official workloads
- Client side caching
- Load generators have greater effect on overall performance.
- sFlow
 - Industry standard for collecting layer 2 network counters
 - Collect data rate

Diagram:
- ESXi Server I
 - Win VM
- ESXi Server 2
 - Win VM
- ESXi Server 10
 - Win VM
- 10 GbE Switch
- 8 Gb FC Switch
- NAS Server
- Storage Controller
- SUT
- Power Meter
- sFlow Collection
- IO Load Driver Systems
File vs Block Test Sequences

- **Block Access**
 - Pre-fill test, puts data in SUT
 - SUT conditioning
 - Active test
 - Ready idle test
 - Capacity optimization test (if defined)

- **File Access**
 - Calibration of SFS benchmarks
 - Execution of the 4 SPEC SFS 2014 workloads, in sequence
 - Ready idle test
 - Capacity optimization test (if defined)
File vs Block Primary Metrics

- Block Access
 - Power efficiency for active phase
 - Hot Band
 - Random Read
 - Random Write
 - Sequential Read
 - Sequential Write
 - Power efficiency for ready idle test phase

- File Access
 - Power efficiency for each workload (MiB/sec/Watt)
 - VDA
 - DATABASE
 - VDI
 - SWBUILD
 - Power efficiency composite metric
 - Power efficiency for Ready Idle test phase
File Access Measurement Points

- The SPEC SFS 2014 metrics are only used to calibrate the appropriate load points for each workload.
- The Emerald efficiency metric (MiB/s/W) is derived from the data collected by the sFlow collector in front of the SUT.
 - SPEC SFS 2014 measures at the application-level.
 - SNIA Emerald measures at the system-level.
In addition to the environmental and power meters common for both Block and File Access Emerald testing, File Access testing requires:

- A network switch that supports sFlow
- An sFlow collector that can log for extended periods of time
File Access Test Procedure

- The four basic phases of file access testing
 - Calibration
 - Measurement
 - Data Reduction
 - SNIA Emerald Metrics
File Access Test Procedure

Calibration

- For each SPEC SFS 2014 workload, find maximum SUT performance
 - Known from existing performance testing
 - Many vendors run SFS 2014 for regression analysis
 - Test to determine as part of Emerald test process
 - Run several SFS 2014 runs, adjusting load points to probe for the maximum valid load point
File Access Test Procedure Calibration Example

- On a new test system, setup SWBUILD to run from 1 to 30 load points, incrementing the load by 1 each step
 - After 28 load points, achieved ops/sec stopped scaling and SFS 2014 was reporting INVALID_RUN
 - At this point, the benchmark was manually terminated
File Access Test Procedure
Measurement

- Using maximum valid load from calibration data
 - Run each workload
 - Ten evenly-spaced load points up to the maximum valid load point
 - Collect environmental, power, and sFlow data for each run
 - Ready-idle test
 - Collect environmental and power data while array is idle
File Access Test Procedure Measurement Example

- From the calibration phase, we know the system’s maximum valid load point is 20 BUILDLS
- Therefore, for measurement, we ran from 2 through 20 BUILDLS, incrementing by 2 BUILDLS
File Access Test Procedure

Data Reduction

- Using collected sFlow and Power data
 - For each workload, for the measurement phase only at each load point, calculate
 - Average power
 - Average network throughput
 - Using the average power and network throughput
 - Calculate efficiency metric at each load point for each workload
 - MiB/s/W
- This process is known as data reduction
 - Time-based data from multiple sources is reduced to calculated metrics per-load point, per-workload
- An open-source tool is expected to be available to assist with this process
File Access Test Procedure
Data Reduction Example

- The raw power data log will include data for the whole duration of benchmark execution
- Only want data from the measurement phase

Shaded areas = MEASUREMENT phase of benchmark
File Access Test Procedure
Data Reduction Example

- Using data reduction techniques, compute average power usage during measurement phase
 - For each load point

- The same process is used for the sFlow data
 - Average network throughput during measurement phase
File Access Test Procedure

SNIA Emerald Metrics

- Find the “sweet-spot” for all four workloads
 - For each workload, find the highest efficiency metric, using data from the data reduction step
 - Usually, but not necessarily, the highest valid load point
 - Compute combined metric based on “sweet-spot” metrics
 - Expected to be computed as the average of the highest efficiency metric for each workload
File Access Test Procedure
SNIA Emerald Metrics Example

- Example data from another system
- In a real Emerald run, there would be ten load points for each workload and ready-idle data

<table>
<thead>
<tr>
<th>EFFICIENCY METRICS Load Point</th>
<th>DATABASE</th>
<th>SWBUILD</th>
<th>VDA</th>
<th>VDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01</td>
<td>0.00</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>0.01</td>
<td>0.01</td>
<td>0.09</td>
<td>0.01</td>
</tr>
<tr>
<td>3</td>
<td>0.02</td>
<td>0.01</td>
<td>0.13</td>
<td>0.02</td>
</tr>
<tr>
<td>4</td>
<td>0.02</td>
<td>0.02</td>
<td>0.17</td>
<td>0.03</td>
</tr>
<tr>
<td>5</td>
<td>0.03</td>
<td>0.02</td>
<td>0.21</td>
<td>0.03</td>
</tr>
<tr>
<td>6</td>
<td>0.03</td>
<td></td>
<td>0.25</td>
<td>0.04</td>
</tr>
<tr>
<td>7</td>
<td>0.04</td>
<td></td>
<td>0.29</td>
<td>0.04</td>
</tr>
<tr>
<td>8</td>
<td>0.04</td>
<td></td>
<td>0.33</td>
<td>0.05</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>0.37</td>
<td></td>
</tr>
</tbody>
</table>

Maximum Efficiency (MiB/s/W) 0.04 0.02 0.37 0.05

This system demonstrates highest efficiency at the highest valid load point

Combined Metric (Proposed) 0.12 MiB/s/W
Key Takeaways

- The SNIA Emerald program is adding support for file access storage systems
- SPEC SFS 2014 and its workloads are used to evaluate file access storage systems
- The SUT for SNIA Emerald file access testing only includes the storage array
 - Efficiency metrics are derived from:
 - Network traffic to and from the storage array
 - Not SPEC SFS 2014 metrics
 - Power consumption by the storage array
Q&A

- Thank you for attending! Please remember to submit feedback on our session!