

Infrastructure Performance Analysis

Peter Murray Virtual Instruments

Hard Problems You're Trying to Understand

- How to most accurately test all solid state storage arrays
- Approaches for assessing storage performance
- How to select the best methodology for real application(s)
- Find proven strategies to size arrays and help avoid over-design and overprovisioning

SD[®]

Application Emulation

- The best way to test all solid state arrays is to emulate real applications
- Temporal locality
 - When data is written/read
- Spatial locality
 - Where data is written/read
- Data content patterns
 - Random or compressible
 - Pattern repetition
- Bursts
 - Bursts are present in applications

The Journey: How Did we Get Here?

- Early storage testing was oversimplified
 - Testing programs designed for disk drives
 - Did not represent actual applications
 - Could not emulate temporal or spatial locality
 - Did not emulate Data Content
 - Did not burst
- Difficult or impossible to:
 - Emulate varying load on many LUNs
 - Configure metadata and data structures required to emulate file-based applications

SS Arrays Require New Storage Testing Methods

- Applications exhibit spatial and temporal locality
 - Modern solid state arrays are designed with this in mind
- Much data content can be reduced
 - Data is random or compressible
 - Data can also be de-duplicated
 - All content types are present in most applications
- Some arrays must be tested with locality and content
 - Data reduction is a key feature can't be turned off
- Data is sent in bursts
 - It's a feature, not a bug

The World has Changed

- Disk drives have not increased in performance in years
 - For years, drives were the primary network storage bottleneck
 - Processors, networks, architectures got better
 - Short-stroking and other techniques had limited effect
 - Data reduction caused unacceptable transaction times
- Solid state memory technologies change this model
 - "Reading is free"
 - Read access time is uniform
 - Unaffected by data location

SD @

Writing to Solid State Arrays

- Typically slower than reading
 - Write cycles are limited, so writing often performed at a page level
 - Inserting or appending existing data causes write amplification
 - So, modern solid state storage arrays avoid writing
 - Some always append, then reclaim stale memory pages
- Flash write access time is implementation dependent
 - Sequential writing speed may be impacted
 - Random writing can impact garbage collection
- Data reduction may require post-processing
- Sustained writes may affect write performance over time

Writing is Hard

"Bursty" Writes are Inherent to Application Traffic

- All application traffic is sent in bursts
 - Clients send at full rate transactions are not metered
 - They occur during both quiet and busy periods
 - Applications complete transactions as quickly as possible
- Test tools that send metered traffic are worse than unhelpful
 - Testing that does not include bursts:
 - Cannot demonstrate how a storage array will behave in production
 - Should not be used to evaluate storage arrays
- More information: http://tinyurl.com/zg5x3dk

How is Flash Different?

- Addressable storage space usually less than raw space
 - May help avoid performance issues during garbage collection
 - Other methods are available to avoid performance issues
 - Can help increase flash life
- Dedupe & compression decrease app storage requirements
 - More storage per nominal byte
 - But may impact performance

How Else is Flash Different?

- Metadata processing makes it harder to fill an array
 - Testing at near full capacity required to understand array performance
 - May require using multiple workloads or scaling workload very high
- Garbage collection or metadata processing may affect performance
- Testing with hotspots crucial to modeling application behavior
- Software services & protocols often run differently on SSD than on HDD

Storage Performance

- Vendor marketing have good stories
 - But don't confuse marketing with reality
- Vendors endorse performance testing with your workloads, derived from production environments, via synthetic workloads
- Vendors and standards organizations produce benchmarks, but they are guidelines at best
- Benchmarks don't offer configuration guidance and don't represent your workloads

Typical Performance Testing Questions

- Which is the best storage technology for a specific requirement?
 - All Solid State (AFA, NVMe)?
 - Hyper-converged array?
 - Hybrid array?
 - All-disk array?
 - Private or public cloud?
- Which is the best vendor / product for a specific requirement?
- What is the optimal configuration for a specific requirement?
- Does performance degrade with enterprise features enabled?
 - Deduplication
 - Compression
 - Snapshots, Clones, Replication

Other Performance Testing Questions

- What are the performance limits of a particular configuration?
 - How will an application grow over time?
- How does an array behave when it reaches its performance limit?
- Does array performance degrade over time?

Traditional Storage Testing Approaches

- Limits finding
- Functional testing
- **Error Injection**
- Soak testing

What programmers think I do

What I think I do

What I actually do

Storage Performance Validation 2 core methodologies

SD[©]

Performance Profiling

- Performance Profiling
- Characterization under a wide range of workload conditions
- Understand sweet spots and weaknesses of an array
- Sometimes referred to as "4 corners" or "limits" testing, but you can do much more than that
- Vendors need these tests to validate portions of a storage array
- Applications don't act like performance profiles
- Some exceptions; e.g. block sizes, queue depth, outstanding commands
- Extraordinarily difficult with free tools

0110011010110-0100 1010010010 JUTL 100101010 J010011L 1101011010 0001011 100101000, 7010 1010101010, 7010 1010101010, 1010

Performance Profiling

Iteration Parameters		*
Access Pattern - Read %	0, 20, 40, 60, 80, 100	×
I/O - Constant Request Size	4KB, 8KB, 16KB, 32KB, 64KB	×
Port - Tx Queue Depth (FC only)	1, 2, 4, 8, 16, 32, 64, 128	×
Load - Throughput Value	1MB, 5MB, 10MB	×
Data Reduction - Uncompressed to compressed ratio	2.0, 1.5	×
+ Add Iteration Parameter	Number of configured ite	rations: 1440

Performance Profiling

Workload Modeling

Workload Modeling

- Stresses an array using a realistic simulation of specific production workload/s
- For IT customers, from your current environment
- For vendors, using customer examples or "dog food"
- Realisic I/O profiles are the most accurate way to test
- Packet traces offer limited utility in testing
- Huge volume of data
- Short duration
- Security concerns

Workload Modeling (continued)

	Pro	jects - Conditio	ons - Reports -	Appliances +	Test Beds 🔸	admin -
Performance C Vendor A: Shall Vendor A: Deep Vendor B: Shall Vendor B: Deep	omparison: NAS V ow Tree Structure (2 Tree Structure (201 ow Tree Structure (201 Tree Structure (201	endor A vs. N 014-03-21: 11: 4-03-20: 12:58 014-03-20: 12:45 4-03-20: 12:45	AS Vendor B 05:05 AM) (50 AM) 48:12 AM) (36 AM)	_		
12		Late	ency			*
RPC Average Response/Latency Time (ms)					MMM	~~~~

Where Does Workload Modeling Come From?

- Customers ask for workload models
 - IT customers want models of their workloads
 - Vendors want "the" workload
 - Oracle, Exchange, etc.
- IT customers ask to help make better decisions about:
 - Upgrading storage hardware or software
 - Changing storage network configuration
- Vendors ask for help to:
 - Test customer examples/issues
 - Find realistic scaling limits to test app growth over time

Result: A New Modeling Method

- Cloud-based workload modeling
- Community-based workload sharing
- Workload model that be ingested into Virtual Networks load generation
- More realistic and scalable than benchmarks

Workload Central Beta

- WorkloadCentral is a free cloud-based analytics platform and community that allows you to understand analyze, create and share workloads.
- Available at: www.workloadcentral.com
- Key Features:
 - Free workload analysis & creation
 - Advanced workload analytics
 - Workloads for validation, testing & benchmarking
 - Workload Library, community & discussion

Uploading Your Workload Data

	ix load Liata Importer				
Workic	ad Data Import				
ACIVE OFM	Aop				
Storage We backgod no	rkload for the ACME CRIM App.	Apo is a PHP based platform us	ng Oracle <mark>RAC</mark> as the		
	and a series of the series				
× EMC	MMAX [x Oracle] x RAC	x PHP			
Log File					*
	un generi fer bir ety			2555 44	
	neopercontensor ;	2 mb)		X	

- The Workload Importer offers:
- Ability to upload data from any vendor or environment
- Out of the box import policies
- Analysis policies provide flexibility to define different workloads

Visualizing Your Data with the Workload Analyzer

				1075					Π.
-							- (1
							_		
- LAALA	h.h.		6. D. D.	h		h.n.		19	
AMANA A	non	44	a a la	(Pilon)	12 Perman	The state	There are	1.10	All Property lies
				10.00.04				-	
	1.000	*****	7444 G	-	Holmon) 4		-	Nation 1	-
all documents		- 10	11	201444	2,01,044		1.411.5	- 2424	Rabi
ingle normalistant	×	.8	- 81	2110-552	20.00302	4	2451	24.357	4.52.0
and the second second	*	- 81	- 63	20.0	42.6	. 10.0	-	Rife.	- 614
the second one		1	-	104130	104143	-	31861	14.000	(1.104)
internet market and	*	11	- 11	6.4	51.6	14.4		16.4	- 14 A
No. 17 american inc.		- 10	8	1.0		1.0	6/8/7		
in Conservation and	-	-	-	-			1000	-	
- Results									12
ni lendi mayira (material larg									2
ni Inves may Vice Markenal Long	LOP			Lat	Macy (mms)		Error		12
vougnput (MB)	IOP A9		Post 1	Lat	mcy (ms)	111	Error	5	(2)
revers roughput (MB) 6k Read 701 Read 703	ioe 48	k	Made 10 Vertex 4		ency (ms) Regi	nar T Van T	Error Û	s. vtion	Read II Monto D
ntmusts http://files http://	HOP 48 Vite Mix	k	North Tal	turo	Frey (ms)	est Size	Distribu	s ation	
extensis may yes means the foroughput (MB) 1.6k faith from to the the Read / Ib Comma	vite Mix	k	North State		Frequency (rms)	Hand I Hand	Error O Distribu	5. 1500 2.2.2.4 24	
at Invaria Throughput (MB) I.GK Read Table Read Table Comma Comma	rite Mix	k			Recy (ms)	ent Sce Prove for	Error O Distribu	s ution	

- A free downloadable, printable report and dashboard that provides:
 - Workload access pattern
 - Workload behavior characteristics
 - Workload performance
 - Workload creation

SD[©]

Running a Block-Based Workload Model

Workload Modeling Simulate the I/O profiles of your production environment

SD[©]

- Per-LUN I/O:
 - Read-Write Mix
 - Random or sequential access
 - Hot spots and hot spot drift
- Data Content
 - Randomness
 - Compressibility
 - Unique vs. duplicated blocks

2. Determine Data Content Patterns

- Consist of repeating and non-repeating patterns
 - Random or compressible
- Consist of varying pattern lengths
- Data content patterns
 - Create during preconditioning
- Data content streams
 - Create during preconditioning
 - Replay during testing

3. Build I/O Models

- Decide when to model
- Boot storm
- Everyday office load
- Backups
- End of period processing
 - Month, Quarter, year end
- Test primary models individually
- Test periodic models on top of everyday load
- Magnify load to test expected maximums

4. Run Workload Models

- Run most common model(s) first
 - Bootstorm
 - "Normal" daily workload
 - Daily backup processing
 - Shutdown
 - Use to determine baseline performance
- Add periodic models to common model
 - E.g. end of period processing
- Combine apps if appropriate and test together

5. Test Array Features

- Test effects of MPIO
- Test effect of maintenance/other management
 - Snapshots, clones, replication, etc.
- Test at or near full capacity
- Test effect of QoS

A		
	euro	
	·	
	and the second s	

Test in an Iterative Manner

- Run
- Analyze
- Repeat as necessary
 - Change testing to reflect expected business conditions

Summary Benefits

- Performance assurance
- Reduced storage costs
- Increased uptime
- Acceleration of new application deployments

Summary

- Application Testing is now mandatory
- Black art has become repeatable
- Testing with bursts is mandatory
- No synthetic workload is perfect
- But is the best approach available
- This will only improve over time
- Customers can see:
- How closely the model emulates apps
- A realistic view of how an array operates
- This new model is changing storage testing

