
Reducing Replication Bandwidth for
Distributed Document Databases

Lianghong Xu1, Andy Pavlo1, Sudipta Sengupta2

Jin Li2, Greg Ganger1
Carnegie Mellon University1, Microsoft Research2

Document-oriented Databases
{
 "_id" : "55ca4cf7bad4f75b8eb5c25c",
 "pageId" : "46780",
 "revId" : "41173",
 "timestamp" : "2002-03-30T20:06:22",
 "sha1" : "6i81h1zt22u1w4sfxoofyzmxd”
 "text" : “The Peer and the Peri is a
comic [[Gilbert and Sullivan]]
[[operetta]] in two acts… just as
predicting,…The fairy Queen, however,
appears to … all live happily ever after. "
}

{
 "_id" : "55ca4cf7bad4f75b8eb5c25d”,
 "pageId" : "46780",
 "revId" : "128520",
 "timestamp" : "2002-03-30T20:11:12",
 "sha1" : "q08x58kbjmyljj4bow3e903uz”
 "text" : "The Peer and the Peri is a
comic [[Gilbert and Sullivan]]
[[operetta]] in two acts… just as
predicted, …The fairy Queen, on the other
hand, is ''not'' happy, and appears to … all
live happily ever after. "
}

Update

Update: Reading a recent doc and writing back a similar one
2	

Replication Bandwidth
{
 "_id" : "55ca4cf7bad4f75b8eb5c25c",
 "pageId" : "46780",
 "revId" : "41173",
 "timestamp" : "2002-­‐03-­‐30T20:06:22Z",
 "sha1" : "6i81h1zt22u1w4sfxoofyzmxd”
 "text" : "The Peer and the Peri” is a
comic [[Gilbert and Sullivan]]
[[operetta]] in two acts… just as
predicting,…The fairy Queen, however,
appears to … all live happily ever after. "
}

{
 "_id" : "55ca4cf7bad4f75b8eb5c25d”,
 "pageId" : "46780",
 "revId" : "128520",
 "timestamp" : "2002-03-30T20:11:12Z",
 "sha1" : "q08x58kbjmyljj4bow3e903uz”
 "text" : "The Peer and the Peri” is a
comic [[Gilbert and Sullivan]]
[[operetta]] in two acts… just as
predicted, …The fairy Queen, on the other
hand, is ''not'' happy, and appears to … all
live happily ever after. "
}

Operation
logs

Operation
logs

Secondary Secondary

WAN

Primary
Database

Goal: Reduce bandwidth
for WAN geo-replication

3	

Why Deduplication?

•  Why not just compress?
–  Oplog batches are small and not enough overlap

•  Why not just use diff?
–  Need application guidance to identify source

•  Dedup finds and removes redundancies
–  In the entire data corpus

4	

Traditional Dedup: Ideal
Modified Region Duplicate Region Chunk Boundary

Deduped
Data

Incoming
Data {BYTE STREAM }

1 2 4 5

1 2 4 5 3

Send dedup’ed
data to replicas

5	

Traditional Dedup: Reality
Modified Region Duplicate Region Chunk Boundary

Incoming
Data

Deduped
Data 4

1 2 4 5 3

Send almost the
entire document.

6	

Similarity Dedup
Modified Region Duplicate Region Chunk Boundary

Incoming
Data

Dedup’ed
Data

Delta!

Only send delta
encoding.

7	

Compress vs. Dedup

20GB sampled Wikipedia dataset
MongoDB v2.7 // 4MB Oplog batches 8	

Primary Node

Client

Secondary Node

sDedup: Similarity Dedup

Source
documents

Insertion & Updates

Database

Oplog

sDedup
Encoder

Unsynchronized
oplog entries

Dedup’ed
oplog entries Oplog

Re-constructed
oplog entries

Replay

sDedup
Decoder

Oplog syncer

Database

Source
documents

Source
Document

Cache

9	

sDedup Encoding Steps

•  Identify Similar Documents
•  Select the Best Match
•  Delta Compression

10	

Identify Similar Documents
Target Document

Consistent Sampling

Similarity Sketch

Rabin Chunking

32 17 25 41 12

41 32

Feature
Index Table

Candidate Documents

41

32

32 25 38 41 12

32 17 38 41 12

39 32 22 15 Doc #1

Doc #2

Doc #3

32 25 38 41 12

32 17 38 41 12

Doc #2

Doc #3

1
Doc #1

2
Doc #2

2
Doc #3

Similarity
Score

11	

Select the Best Match

Source Document
Cache

Rank Candidates Score

1 2

1 2

2 1 Doc #1

Doc #2

Doc #3

Initial Ranking Final Ranking

Rank Candidates Cached? Score

1 Yes 4

1 Yes 3

2 No 2

Doc #1

Doc #3

Doc #2

Is doc cached? If yes, reward +2

12	

Evaluation

•  MongoDB setup (v2.7)
–  1 primary, 1 secondary node, 1 client
–  Node Config: 4 cores, 8GB RAM, 100GB HDD storage

•  Datasets:
–  Wikipedia dump (20GB out of ~12TB)
–  Additional datasets evaluated in the paper

13	

Compression

9.9

26.3

38.4
 38.9

2.3
 4.6

9.1

15.2

0

10

20

30

40

50

4KB
 1KB
 256B
 64B

C
om

pr
es

si
on

 R
at

io

Chunk Size

sDedup
 trad-dedup

20GB sampled Wikipedia dataset 14	

Memory

34.1
 47.9
 57.3
 61.0
80.2

133.0

272.5

780.5

0

200

400

600

800

4KB
 1KB
 256B
 64B

M
em

or
y

(M
B)

Chunk Size

sDedup
 trad-dedup

20GB sampled Wikipedia dataset 15	

Other Results (See Paper)

•  Negligible client performance overhead
•  Failure recovery is quick and easy
•  Sharding does not hurt compression rate
•  More datasets

–  Microsoft Exchange, Stack Exchange

16	

Conclusion & Future Work

•  sDedup: Similarity-based deduplication for
replicated document databases.
–  Much greater data reduction than traditional dedup
–  Up to 38x compression ratio for Wikipedia
–  Resource-efficient design with negligible overhead

•  Future work
–  More diverse datasets
–  Dedup for local database storage
–  Different similarity search schemes (e.g., super-fingerprints)

17	

Backup Slides

18	

Compression: StackExchange

1.0
 1.2
 1.3

1.8

1.0
 1.0
 1.1
 1.2

0

1

2

3

4

5

4KB
 1KB
 256B
 64B

C
om

pr
es

si
on

 R
at

io

Chunk Size

sDedup
 trad-dedup

10GB sampled StackExchange dataset 19	

Memory: StackExchange

83.9
 115.4
 228.4
 414.3
302.0
 439.8

899.2

3,082.5

0

500

1000

1500

2000

2500

3000

3500

4KB
 1KB
 256B
 64B

M
em

or
y

(M
B)

Chunk Size

sDedup
 trad-dedup

10GB sampled StackExchange dataset 20	

Throughput Overhead

21	

Failure Recovery

20GB sampled Wikipedia dataset.

Failure Point

22	

Dedup + Sharding

38.4
 38.2
 38.1
 37.9

0

10

20

30

40

50

1
 3
 5
 9

C
om

pr
es

si
on

 R
at

io

Number of Shards

20GB sampled Wikipedia dataset 23	

Delta Compression

•  Byte-level diff between source and target docs:
–  Based on the xDelta algorithm
–  Improved speed with minimal loss of compression

•  Encoding:
–  Descriptors about duplicate/unique regions + unique bytes

•  Decoding:
–  Use source doc + encoded output
–  Concatenate byte regions in order

24	

