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Moving to Three Tiers 
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Modifying Applications for pmem… 
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Reasons to Re-architect an Application 

 Large data set 
Terabytes 

 Persistent 
 Byte addressable 
Especially random, small accesses 
Storage must convert all accesses to blocks 

 DMA target 
 Performance critical 
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Reasons NOT to Re-architect 

 One of the transparent ways to use pmem works 
well enough 
Supplementing memory (paging) 
Block mode driver 
Some middleware using it transparently 

 When cost outweighs benefit 
Architecture, design, implementation 
Validation 
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Example: A Good Candidate for pmem 

 Database-like application 
 Transactional updates to tables 
 (Tables might be in-memory) 

 Write-Ahead-Logging 
Written, never read 

(Except after crash) 
Appending to log file 
Path includes FS 
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Example: Non-transparent Solution 
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Learning a new API 

fd = 
open(LOGFILE, …); 
… 
write(fd, buf, len); 
… 
fsync(fd); 

pop = 
pmemobj_open(FILE, …); 
… 
TX_BEGIN(pop) { 
 … 
 TX_MEMCPY(…); 
 … 
} TX_END 
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Learning an Easier API 

fd = 
open(LOGFILE, …); 
… 
write(fd, buf, len); 
… 
fsync(fd); 

fd = 
pmemfile_open(LOGFILE, …); 
… 
pmemfile_write(fd, buf, len); 
… 
/* fsync(fd); */ 
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libpmemfile 
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Using libpmemfile transparently 
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Built on libpmemobj, So We Inherit… 

13 

NVDIMM 

     Application 

Load/Store Standard 
File API 

pmem-Aware 
File System 

MMU 
Mappings 

obj 
pmem 

file 

intercept 

NVDIMM 

pmem-Aware 
File System 

Remote Machine 

Replication 
Transparent to the App 



2016 Storage  Developer Conference. © Intel.  All Rights Reserved. 
 

What Operations “Just Work?” 

 Basic file I/O syscalls 
open / close / read / write … 

 libc functions that build on basic file I/O 
fopen / fprintf / opendir / readdir … 

 
 App sees normal files, directories, etc. 
But sometimes they live in a pmem pool 
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What Operations Are Problematic? 

 fork (with no exec) 
 might not work as expected 

 select on files 
 Who does this? 

 mmap 
 Just use pmem-aware FS for this 

 aio 
 Some rare syscalls 
 Multi-process access (multi-thread ok) 

 Also a limitation of libpmemobj 
 Still looking for requirements on this 

 Key is how to report when something doesn’t work 
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Implementing the Interception Logic 
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libpmemfile Performance 

 The thing to beat… 
pmem-aware file system 

ext4, xfs, ntfs 
Or traditional file system on block driver 

 Code path for things like append… 
Traditional 

Deep through FS code, includes metadata updates 
 libpmemfile 

 load/store/cache flush instructions in user space 
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Proof-of-concept Results 
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Proof-of-concept Results 
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Summary 
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Summary 
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Summary 

 Many ideas for transparent use of pmem 
We describe one idea here, there are more! 
Lowers the barrier to adoption 

 Nobody is claiming they have the One True 
Answer yet (that I’m aware of) 
Want to encourage multiple, competing ideas 
Want to get some experience with solutions 
Want to try pmem before re-architecting app 

 Watch for libpmemfile sometime next year 
22 
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