
2016 Storage Developer Conference. © Intel. All Rights Reserved.

Breaking Barriers: Making Adoption of
Persistent Memory Easier

Andy Rudoff
Intel Corporation

2016 Storage Developer Conference. © Intel. All Rights Reserved.

The Past:Two Primary Tiers for
Run-Time Data

2

Application

File System

Application Memory

Storage

2016 Storage Developer Conference. © Intel. All Rights Reserved.

Moving to Three Tiers

3

Application

File System

Application Memory

Storage

Persistent
Memory

2016 Storage Developer Conference. © Intel. All Rights Reserved.

Modifying Applications for pmem…

4

NVDIMM

User
Space

Kernel
Space

 Application

Load/Store Standard
File API

pmem-Aware
File System

MMU
Mappings

Library

• Open Source
• http://pmem.io

• libpmem
• libpmemobj
• libpmemblk
• libpmemlog
• libvmem
• libvmmalloc

Transactional

http://pmem.io/

2016 Storage Developer Conference. © Intel. All Rights Reserved.

Reasons to Re-architect an Application

 Large data set
Terabytes

 Persistent
 Byte addressable
Especially random, small accesses
Storage must convert all accesses to blocks

 DMA target
 Performance critical

5

2016 Storage Developer Conference. © Intel. All Rights Reserved.

Reasons NOT to Re-architect

 One of the transparent ways to use pmem works
well enough
Supplementing memory (paging)
Block mode driver
Some middleware using it transparently

 When cost outweighs benefit
Architecture, design, implementation
Validation

6

2016 Storage Developer Conference. © Intel. All Rights Reserved.

Example: A Good Candidate for pmem

 Database-like application
 Transactional updates to tables
 (Tables might be in-memory)

 Write-Ahead-Logging
Written, never read

(Except after crash)
Appending to log file
Path includes FS

7

Application

File System

Append to log

Log file

2016 Storage Developer Conference. © Intel. All Rights Reserved.

Example: Non-transparent Solution

8

NVDIMM

 Application

Load/Store Standard
File API

pmem-Aware
File System

MMU
Mappings

obj

 Application uses
libpmemobj API

 Log appends become
transactions to pmem

 Much faster, but…
 App had to change

pmem

2016 Storage Developer Conference. © Intel. All Rights Reserved.

Learning a new API

fd =
open(LOGFILE, …);
…
write(fd, buf, len);
…
fsync(fd);

pop =
pmemobj_open(FILE, …);
…
TX_BEGIN(pop) {
 …
 TX_MEMCPY(…);
 …
} TX_END

9

2016 Storage Developer Conference. © Intel. All Rights Reserved.

Learning an Easier API

fd =
open(LOGFILE, …);
…
write(fd, buf, len);
…
fsync(fd);

fd =
pmemfile_open(LOGFILE, …);
…
pmemfile_write(fd, buf, len);
…
/* fsync(fd); */

10

2016 Storage Developer Conference. © Intel. All Rights Reserved.

libpmemfile

11

NVDIMM

 Application

Load/Store Standard
File API

pmem-Aware
File System

MMU
Mappings

obj

 libpmemfile
Modeled after POSIX

 Familiar API

 App had to change

pmem

file

2016 Storage Developer Conference. © Intel. All Rights Reserved.

Using libpmemfile transparently

12

NVDIMM

 Application

Load/Store Standard
File API

pmem-Aware
File System

MMU
Mappings

obj

 Linker magic
Loads libpmemfile
Helps with intercept

 Admin configures which
files live on pmem

 App binary unchanged

pmem

file

intercept

2016 Storage Developer Conference. © Intel. All Rights Reserved.

Built on libpmemobj, So We Inherit…

13

NVDIMM

 Application

Load/Store Standard
File API

pmem-Aware
File System

MMU
Mappings

obj
pmem

file

intercept

NVDIMM

pmem-Aware
File System

Remote Machine

Replication
Transparent to the App

2016 Storage Developer Conference. © Intel. All Rights Reserved.

What Operations “Just Work?”

 Basic file I/O syscalls
open / close / read / write …

 libc functions that build on basic file I/O
fopen / fprintf / opendir / readdir …

 App sees normal files, directories, etc.
But sometimes they live in a pmem pool

14

2016 Storage Developer Conference. © Intel. All Rights Reserved.

What Operations Are Problematic?

 fork (with no exec)
 might not work as expected

 select on files
 Who does this?

 mmap
 Just use pmem-aware FS for this

 aio
 Some rare syscalls
 Multi-process access (multi-thread ok)

 Also a limitation of libpmemobj
 Still looking for requirements on this

 Key is how to report when something doesn’t work
15

2016 Storage Developer Conference. © Intel. All Rights Reserved.

Implementing the Interception Logic

16

 Application

Load/Store Standard
File API

obj

 ld.so and libc try to protect
the app from unexpected
behavior

 No well-specified, high-
performance interception
method available

 Like supported syscalls,
simple interposition may
be “good enough”

pmem

file

intercept

2016 Storage Developer Conference. © Intel. All Rights Reserved.

libpmemfile Performance

 The thing to beat…
pmem-aware file system

ext4, xfs, ntfs
Or traditional file system on block driver

 Code path for things like append…
Traditional

Deep through FS code, includes metadata updates
 libpmemfile

 load/store/cache flush instructions in user space
17

2016 Storage Developer Conference. © Intel. All Rights Reserved.

Proof-of-concept Results

18

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

btrfs-nodax-fsync pmemfile-small-alloc xfs-dax-fsync ext4-dax-fsync pmemfile-large-alloc

64kB Appends per Second

2016 Storage Developer Conference. © Intel. All Rights Reserved.

Proof-of-concept Results

19

0

5000

10000

15000

20000

25000

30000

btrfs-nodax-fsync xfs-dax-fsync pmemfile-small-alloc memcpy ext4-dax-fsync pmemfile-large-alloc

64kB Updates per Second

2016 Storage Developer Conference. © Intel. All Rights Reserved.

Summary

20

pmem libpmemfile Emulated Block Mode

User
Space

Kernel
Space

Standard File APIs

NVDIMM Driver

Unmodifed Application

File System

 Re-designed Application

Direct
Load/Store

NVM

NVML APIs NVML Emulated File APIs

Unmodifed Application

Seamless adoption
BUT µs-level Application Latency

Lowest App Latencies
BUT Heavy-lift Enabling

Direct
Load/Store

Unmodified application
AND Low App Latency

libpmemfile can provide much of the latency benefit without App changes

DRAM NVM In-place
Persistenc
e

NVM DRAM

2016 Storage Developer Conference. © Intel. All Rights Reserved.

Summary

21

pmem libpmemfile Emulated Block Mode

User
Space

Kernel
Space

Standard File APIs

NVDIMM Driver

Unmodifed Application

File System

 Re-designed Application

Direct
Load/Store

NVM

NVML APIs NVML Emulated File APIs

Unmodifed Application

Seamless adoption
BUT µs-level Application Latency

Lowest App Latencies
BUT Heavy-lift Enabling

Direct
Load/Store

Unmodified application
AND Low App Latency

libpmemfile can provide much of the latency benefit without App changes

DRAM NVM In-place
Persistenc
e

NVM DRAM

Inherits libpmemobj features like replication!

2016 Storage Developer Conference. © Intel. All Rights Reserved.

Summary

 Many ideas for transparent use of pmem
We describe one idea here, there are more!
Lowers the barrier to adoption

 Nobody is claiming they have the One True
Answer yet (that I’m aware of)
Want to encourage multiple, competing ideas
Want to get some experience with solutions
Want to try pmem before re-architecting app

 Watch for libpmemfile sometime next year
22

	Breaking Barriers: Making Adoption of Persistent Memory Easier�
	The Past:Two Primary Tiers for�Run-Time Data
	Moving to Three Tiers
	Modifying Applications for pmem…
	Reasons to Re-architect an Application
	Reasons NOT to Re-architect
	Example: A Good Candidate for pmem
	Example: Non-transparent Solution
	Learning a new API
	Learning an Easier API
	libpmemfile
	Using libpmemfile transparently
	Built on libpmemobj, So We Inherit…
	What Operations “Just Work?”
	What Operations Are Problematic?
	Implementing the Interception Logic
	libpmemfile Performance
	Proof-of-concept Results
	Proof-of-concept Results
	Summary
	Summary
	Summary

