
2016 Storage  Developer Conference. © Intel.  All Rights Reserved. 
 

Breaking Barriers: Making Adoption of 
Persistent Memory Easier 

 

Andy Rudoff 
Intel Corporation 



2016 Storage  Developer Conference. © Intel.  All Rights Reserved. 
 

The Past:Two Primary Tiers for 
Run-Time Data 

2 

Application 

File System 

Application Memory 

Storage 



2016 Storage  Developer Conference. © Intel.  All Rights Reserved. 
 

Moving to Three Tiers 
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Modifying Applications for pmem… 
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Reasons to Re-architect an Application 

 Large data set 
Terabytes 

 Persistent 
 Byte addressable 
Especially random, small accesses 
Storage must convert all accesses to blocks 

 DMA target 
 Performance critical 
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Reasons NOT to Re-architect 

 One of the transparent ways to use pmem works 
well enough 
Supplementing memory (paging) 
Block mode driver 
Some middleware using it transparently 

 When cost outweighs benefit 
Architecture, design, implementation 
Validation 
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Example: A Good Candidate for pmem 

 Database-like application 
 Transactional updates to tables 
 (Tables might be in-memory) 

 Write-Ahead-Logging 
Written, never read 

(Except after crash) 
Appending to log file 
Path includes FS 
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Example: Non-transparent Solution 
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Learning a new API 

fd = 
open(LOGFILE, …); 
… 
write(fd, buf, len); 
… 
fsync(fd); 

pop = 
pmemobj_open(FILE, …); 
… 
TX_BEGIN(pop) { 
 … 
 TX_MEMCPY(…); 
 … 
} TX_END 
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Learning an Easier API 

fd = 
open(LOGFILE, …); 
… 
write(fd, buf, len); 
… 
fsync(fd); 

fd = 
pmemfile_open(LOGFILE, …); 
… 
pmemfile_write(fd, buf, len); 
… 
/* fsync(fd); */ 
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libpmemfile 
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Using libpmemfile transparently 
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Built on libpmemobj, So We Inherit… 
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What Operations “Just Work?” 

 Basic file I/O syscalls 
open / close / read / write … 

 libc functions that build on basic file I/O 
fopen / fprintf / opendir / readdir … 

 
 App sees normal files, directories, etc. 
But sometimes they live in a pmem pool 
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What Operations Are Problematic? 

 fork (with no exec) 
 might not work as expected 

 select on files 
 Who does this? 

 mmap 
 Just use pmem-aware FS for this 

 aio 
 Some rare syscalls 
 Multi-process access (multi-thread ok) 

 Also a limitation of libpmemobj 
 Still looking for requirements on this 

 Key is how to report when something doesn’t work 
15 
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Implementing the Interception Logic 
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libpmemfile Performance 

 The thing to beat… 
pmem-aware file system 

ext4, xfs, ntfs 
Or traditional file system on block driver 

 Code path for things like append… 
Traditional 

Deep through FS code, includes metadata updates 
 libpmemfile 

 load/store/cache flush instructions in user space 
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Proof-of-concept Results 
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Proof-of-concept Results 
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Summary 
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Summary 
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Summary 

 Many ideas for transparent use of pmem 
We describe one idea here, there are more! 
Lowers the barrier to adoption 

 Nobody is claiming they have the One True 
Answer yet (that I’m aware of) 
Want to encourage multiple, competing ideas 
Want to get some experience with solutions 
Want to try pmem before re-architecting app 

 Watch for libpmemfile sometime next year 
22 
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