
SMB Server

Kernel versus User Space Learnings

Oleg Kravtsov

Lead Software Developer

2

Tuxera is the leading provider of file

systems software and networking

technologies.

3

We enable people and businesses to

reliably store, access, and share any type

of data on any device.

4

We’re active members in key industry associations

Selected software partners

Strong partnerships ensure interoperability

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

5

Challenges solved by Tuxera’s technology

Multiscreen media streaming Data storage and streaming for the

connected home

High-performance network storageFully interoperable data storage support

Tuxera’s file system solutions Tuxera’s network technology

Tuxera’s SDKs Tuxera’s consumer apps

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Motivation – embedded vs. enterprise

6

Each use case has it’s own unique risks, complexities, and constraints

vs.

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Motivation – embedded platforms

Flexibility in development

 Dependent on toolchain

capabilities

 Perhaps limited library set

7

General characteristics

OS: Mostly Linux

Use: Routers, set-top boxes, etc. in

home networks

Server paradigm: Both user and kernel

Software characteristics

 Highly dependent on underlying HW

 Code on-disk and in-memory size

 Energy-efficient

 Increased performance expectation

under resource constraints

 Simple security requirements

 Typically less number of clients

Hardware constraints

 Limitation on CPU and processor

capacity (low clock speed, etc.)

 Resource use by other parallel

processes

 Limited memory

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Motivation – enterprise platforms

Flexibility in development

 If not based on Linux, need

implementation of OS-specific

function calls

8

General characteristics

OS: Manufacturer-specific

Use: Large-scale server farms, data

centers

Software characteristics

 Performance

 Scalability: scale-up or scale-out + large

number of simultaneous client support

 Robustness

 Availability

 Complex security configurations

 Enterprise jargons: multi-tenancy, de-dup, etc.

Hardware constraints

 Mostly large-scale servers

 No or very low hardware and

resource constraints

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Motivation – common expectations

 Real-time behavior for events and expected outcome

 High demands on availability, security, and interoperability

 Usually long-lived systems, hence reliability is very important

 Multi-client application

92016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

User space vs. kernel space – user space

Reasons we love user space...

 Highly flexible compared to kernel
space

 Better sanity checks and fault
tolerance

 No system freezes due to sub-
optimal or error-prone code

 Development in kernel avoids
unnecessary data copies

 Sendfile, recvfile (unofficial), etc.

 Debugging and monitoring are easy
with a plethora of tools

😀

10

Reasons user space sucks…

 Overhead added due to:

 Context switches

 Making system calls

 Data copy between user

and kernel spaces

 Additional CPU consumption

 TLB misses

 Memory page swapping,

etc.

😒

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

11

User space vs. kernel space – kernel space

Reasons kernel space sucks…

 Steep learning curve

 Requires kernel know-how for

efficient programming

 Debugging and monitoring not as

easy as user-space

 Some utilities require provisioning

kernel with appropriate config options

 If you screw up, deadlocks, panic,

and freezes are possible

😒

Reasons we love kernel space...

 Tight integration with VFS and

network stack

 Avoids duplicate caching compared

to user space

 Simpler zero-copy read and write

interface

 Typically better performance than

user space

 Because it’s just cool...

😀

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

General design goals

 Modularity

Important services and core functionalities divided into sub systems

 Hierarchical

Lower-level subsystems provide services to upper level

 Multi-threaded and multi-process hybrid architecture

 Maximum interrupt spread on multi-core architecture

Controlling thread (process) affinity?

 Design based on minimizing cache misses?

We are being dreamy here...

122016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Space-specific design goals

13

User space

 Reduced penalty due to

boundary crossing and

buffer copies

 Memory mapped IO?

Kernel space

 Keep it comparatively

light weight

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Architecture

Server Format No. Of Binaries Binary type Server Mode

User space 1 Server binary
Single process (Threaded)

Multi process (Forked)

Kernel space 2

Server binary
Single process (Threaded)

Multi process (Forked)

Kernel module Kernel threads

142016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Architecture – user-space format

152016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Architecture – kernel-space format

162016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Architecture – abstractions, everywhere... (1 of 2)

Hybrid architecture made possible with strong abstraction layer

172016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Threads/processes

 User-space (pthreads and fork)

 Kernel threads

Memory management

 Libc-malloc

 Kmalloc

 Memory pools?

Timer

 Posix timer, kernel timer

Network

 Socket descriptor, struct sock

Locks

 Pthread locks, mutex, spinlocks

File system I/O operations

 Streams, descriptors, struct file, etc.

 Allows pluggable VFS modules

In-house message queuing subsystem

18

Architecture – abstractions, everywhere... (2 of 2)

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Architecture – components

Main components

 TSMB core (user space binary or kernel module)

 Transport

 VFS

 Encryption Engine

 Protocol Engine

 TSMB Authenticator (service in user space)

 TSMB SRV (Service in user space)

 Same code for all ports

 Most optimizations are in abstraction layer for different ports

 Core can reside in kernel or user space depending on compiled format

192016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Architecture – TSMB core

 In user format  lives in user-space

 In kernel format  resides as a kernel module

 Protocol Engine

 Lock less, sleep less thread

 Receives and forwards packet from and to transport sub-component

 Receives and forwards packets from and to VFS

 VFS

 Threaded component

 Handles file system operations

 Transport

 Threaded component

 Handles Rx/Tx of SMB PDUs from/to authenticated clients

 SMB Direct (RDMA) – new transport is as simple as a pluggable abstraction

 Encryption engine

 Threaded component

 Encrypts and decrypts SMB PDU

 Can either use in-house encryption and signing libraries or link to Openssl (when

in user space)

202016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Architecture – service components

 Always in user space

 Runs as a separate process in user space

 Supplements the TSMB core

 Authenticator service

 Authenticates sessions from new clients

 In kernel format, TSMB-core sends an up-call to get security context of users,

UID, GIDs, etc.

 SRV service

 Server management service

 House the DCE/RPC component

 Supports RPC endpoints srvsvc, spoolss, etc.

 Service components are pluggable

 Maintaining services in user space reduces server bulkiness

 Decision to maintain non-performance critical components in user space

 New services like clustering, witness may be added as services

212016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

What did we learn?

1. Abstractions are important

 Clean abstraction can separate core components from OS-specific

calls

 Abstraction provided clean interface among different components

 Only learning curve is the knowledge of local abstracted syscall

 Divide and conquer

 Code easily manageable

222016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

What did we learn?

23

2. Deadlock nightmares

 Code in interrupt context should be kept extremely light and lock free

 Obviously not always the case

 Appropriate locking mechanism must be considered depending on the

following:

 The context in which a particular code is acquiring or releasing the locks

 The context in which the data being locked is accessed

 The contexts may be Interrupt (or) Process

 Properly handle disabling pre-emption or disabling interrupts

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

3. Performance gain (is it a myth?)

 Embedded hardware shows a significant performance gain when in kernel

space compared to user space

 Powerful desktop PCs dont show significant boost

 Most gain in CPU usage, kernel CPU usage < user space CPU usage

24

What did we learn?

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

25

What did we learn?

4. Memory fragmentation is real

 Long-running servers with frequent malloc/free cause extreme

memory fragmentation

 Application crashes on Ubuntu laptops with ”Page allocation failure”

error

 Especially prominent when using SMB PDU size > 64 KB

 Memory pools save the day

 Static pools sometimes limit performance

 Dynamic pools boosted performance

 CPU usage reduced by about 5-10% when using pools

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Tuxera Inc.

Corporate Headquarter

Itämerenkatu 9 00180 Helsinki, Finland

info@tuxera.com

