
SMB Server

Kernel versus User Space Learnings

Oleg Kravtsov

Lead Software Developer

2

Tuxera is the leading provider of file

systems software and networking

technologies.

3

We enable people and businesses to

reliably store, access, and share any type

of data on any device.

4

We’re active members in key industry associations

Selected software partners

Strong partnerships ensure interoperability

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

5

Challenges solved by Tuxera’s technology

Multiscreen media streaming Data storage and streaming for the

connected home

High-performance network storageFully interoperable data storage support

Tuxera’s file system solutions Tuxera’s network technology

Tuxera’s SDKs Tuxera’s consumer apps

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Motivation – embedded vs. enterprise

6

Each use case has it’s own unique risks, complexities, and constraints

vs.

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Motivation – embedded platforms

Flexibility in development

 Dependent on toolchain

capabilities

 Perhaps limited library set

7

General characteristics

OS: Mostly Linux

Use: Routers, set-top boxes, etc. in

home networks

Server paradigm: Both user and kernel

Software characteristics

 Highly dependent on underlying HW

 Code on-disk and in-memory size

 Energy-efficient

 Increased performance expectation

under resource constraints

 Simple security requirements

 Typically less number of clients

Hardware constraints

 Limitation on CPU and processor

capacity (low clock speed, etc.)

 Resource use by other parallel

processes

 Limited memory

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Motivation – enterprise platforms

Flexibility in development

 If not based on Linux, need

implementation of OS-specific

function calls

8

General characteristics

OS: Manufacturer-specific

Use: Large-scale server farms, data

centers

Software characteristics

 Performance

 Scalability: scale-up or scale-out + large

number of simultaneous client support

 Robustness

 Availability

 Complex security configurations

 Enterprise jargons: multi-tenancy, de-dup, etc.

Hardware constraints

 Mostly large-scale servers

 No or very low hardware and

resource constraints

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Motivation – common expectations

 Real-time behavior for events and expected outcome

 High demands on availability, security, and interoperability

 Usually long-lived systems, hence reliability is very important

 Multi-client application

92016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

User space vs. kernel space – user space

Reasons we love user space...

 Highly flexible compared to kernel
space

 Better sanity checks and fault
tolerance

 No system freezes due to sub-
optimal or error-prone code

 Development in kernel avoids
unnecessary data copies

 Sendfile, recvfile (unofficial), etc.

 Debugging and monitoring are easy
with a plethora of tools

😀

10

Reasons user space sucks…

 Overhead added due to:

 Context switches

 Making system calls

 Data copy between user

and kernel spaces

 Additional CPU consumption

 TLB misses

 Memory page swapping,

etc.

😒

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

11

User space vs. kernel space – kernel space

Reasons kernel space sucks…

 Steep learning curve

 Requires kernel know-how for

efficient programming

 Debugging and monitoring not as

easy as user-space

 Some utilities require provisioning

kernel with appropriate config options

 If you screw up, deadlocks, panic,

and freezes are possible

😒

Reasons we love kernel space...

 Tight integration with VFS and

network stack

 Avoids duplicate caching compared

to user space

 Simpler zero-copy read and write

interface

 Typically better performance than

user space

 Because it’s just cool...

😀

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

General design goals

 Modularity

Important services and core functionalities divided into sub systems

 Hierarchical

Lower-level subsystems provide services to upper level

 Multi-threaded and multi-process hybrid architecture

 Maximum interrupt spread on multi-core architecture

Controlling thread (process) affinity?

 Design based on minimizing cache misses?

We are being dreamy here...

122016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Space-specific design goals

13

User space

 Reduced penalty due to

boundary crossing and

buffer copies

 Memory mapped IO?

Kernel space

 Keep it comparatively

light weight

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Architecture

Server Format No. Of Binaries Binary type Server Mode

User space 1 Server binary
Single process (Threaded)

Multi process (Forked)

Kernel space 2

Server binary
Single process (Threaded)

Multi process (Forked)

Kernel module Kernel threads

142016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Architecture – user-space format

152016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Architecture – kernel-space format

162016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Architecture – abstractions, everywhere... (1 of 2)

Hybrid architecture made possible with strong abstraction layer

172016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Threads/processes

 User-space (pthreads and fork)

 Kernel threads

Memory management

 Libc-malloc

 Kmalloc

 Memory pools?

Timer

 Posix timer, kernel timer

Network

 Socket descriptor, struct sock

Locks

 Pthread locks, mutex, spinlocks

File system I/O operations

 Streams, descriptors, struct file, etc.

 Allows pluggable VFS modules

In-house message queuing subsystem

18

Architecture – abstractions, everywhere... (2 of 2)

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Architecture – components

Main components

 TSMB core (user space binary or kernel module)

 Transport

 VFS

 Encryption Engine

 Protocol Engine

 TSMB Authenticator (service in user space)

 TSMB SRV (Service in user space)

 Same code for all ports

 Most optimizations are in abstraction layer for different ports

 Core can reside in kernel or user space depending on compiled format

192016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Architecture – TSMB core

 In user format lives in user-space

 In kernel format resides as a kernel module

 Protocol Engine

 Lock less, sleep less thread

 Receives and forwards packet from and to transport sub-component

 Receives and forwards packets from and to VFS

 VFS

 Threaded component

 Handles file system operations

 Transport

 Threaded component

 Handles Rx/Tx of SMB PDUs from/to authenticated clients

 SMB Direct (RDMA) – new transport is as simple as a pluggable abstraction

 Encryption engine

 Threaded component

 Encrypts and decrypts SMB PDU

 Can either use in-house encryption and signing libraries or link to Openssl (when

in user space)

202016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Architecture – service components

 Always in user space

 Runs as a separate process in user space

 Supplements the TSMB core

 Authenticator service

 Authenticates sessions from new clients

 In kernel format, TSMB-core sends an up-call to get security context of users,

UID, GIDs, etc.

 SRV service

 Server management service

 House the DCE/RPC component

 Supports RPC endpoints srvsvc, spoolss, etc.

 Service components are pluggable

 Maintaining services in user space reduces server bulkiness

 Decision to maintain non-performance critical components in user space

 New services like clustering, witness may be added as services

212016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

What did we learn?

1. Abstractions are important

 Clean abstraction can separate core components from OS-specific

calls

 Abstraction provided clean interface among different components

 Only learning curve is the knowledge of local abstracted syscall

 Divide and conquer

 Code easily manageable

222016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

What did we learn?

23

2. Deadlock nightmares

 Code in interrupt context should be kept extremely light and lock free

 Obviously not always the case

 Appropriate locking mechanism must be considered depending on the

following:

 The context in which a particular code is acquiring or releasing the locks

 The context in which the data being locked is accessed

 The contexts may be Interrupt (or) Process

 Properly handle disabling pre-emption or disabling interrupts

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

3. Performance gain (is it a myth?)

 Embedded hardware shows a significant performance gain when in kernel

space compared to user space

 Powerful desktop PCs dont show significant boost

 Most gain in CPU usage, kernel CPU usage < user space CPU usage

24

What did we learn?

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

25

What did we learn?

4. Memory fragmentation is real

 Long-running servers with frequent malloc/free cause extreme

memory fragmentation

 Application crashes on Ubuntu laptops with ”Page allocation failure”

error

 Especially prominent when using SMB PDU size > 64 KB

 Memory pools save the day

 Static pools sometimes limit performance

 Dynamic pools boosted performance

 CPU usage reduced by about 5-10% when using pools

2016 Storage Developer Conference. © Tuxera Inc. All Rights Reserved

Tuxera Inc.

Corporate Headquarter

Itämerenkatu 9 00180 Helsinki, Finland

info@tuxera.com

