

An Examination of User Workloads Real World Storage Workload Capture

Eden Kim Calypso Systems, Inc.

An Examination of User Workloads Real World Storage Workload Capture

- A. What Are Real World Storage Workloads& Why Do We Care?
- B. What Do Real World Storage Workloads Look Like?
- c. Case Study: Retail Store Web Portal 24 hour Capture
- D. Take Aways
- E. Q&A

What Are Real World Storage Workloads and Why Do We Care?

Real World Storage Workloads are Unique and are the:

IOs that occur when YOUR application is running

IO Streams that traverse *YOUR* **Hardware/Software Stack**

IO Streams that present to YOUR HDD/SSD/Array Storage

IO Streams are YOUR Data Traversing the HW/SW Stack

Many Different IO Streams each with a Unique:

Random or Sequential Access, Data Transfer Size Read/Write Mix, Entropy and Spatial & Temporal Locality of Reference

IO Streams Change at each level of SW Abstraction

Fragmented, Coalesced, Appended due toVirtualization, Packetization, Encryption, Data ReductionCompression, Deduplication, Storage Tiering and more

Because IO Streams Change, it is important to Capture IOs as close to the storage as possible – ideally at the Block IO level

Why Do We Care?

SSD Performance & Endurance Depends on it:

SSD Performance Depends on the Type of Workload

Workloads Affect Endurance (Write Amplification)

Storage Tiering Strategies are Based on Workload Assumptions

Workloads Determine What Type of SSD is Best for Your Application

Be Sure to Buy the Right Amount of Performance and Endurance!

What Do Real World Storage Workloads Look Like?

IO Streams Can Be Visualized As:

IO Stream Maps by Frequency over Time (IO Stream Map)

IO Stream Maps by Location over Time (LBA Hit Map)

A Tabular Distribution of IO Streams

Σ	Cumulative	Workload	I X
🔽 F	RND 64K R	19.5%	841,495
2 \$	SEQ 0.5K W	17.9%	775,072
🔽 F	RND 8K R	10.5%	454,786
<mark>.</mark>	SEQ 8K R	8.8%	381,168
🔽 F	RND 4K W	4.1%	179,391
2 \$	SEQ 64K R	3.5%	152,723
	RND 8K W	2.91%	125,959
	RND 4K R	2.74%	118,560
🗆 F	RND 16K R	1.94%	83,965
	SEQ 4K R	1.70%	73,534
	RND 32K R	1.63%	70,407
Total IOs of 5,038 streams: 4,326,159			
Sele	ected 6 streams:	2,784,635	(64.4%)

Key IO Stream Metrics Include:

IO Stream Map Frequency & Amount

LBA Hit Maps – Spatial & Temporal Locality of Reference

Specific Process ID for IO Streams

IO Stream Sequentiality, Queue Depth, Response Times

IOPS rate, Bandwidth, Access Patterns, Data Transfer Sizes

Reads, Writes, Amount Written

Compressibility Ratio

Deduplication Ratio

Workload Visualization – Example #3 at TestMyWorkload.com

Case Study

Test Plan

- Create Workload Segments from IO Capture Data
- Test using the same OS and Software as Captured Data
- ✓ Apply Workloads to 3 Data Center SATA SSDs
- Compare Performance to Workload Segments
- Compare Performance to Workload Replay

Test Set Up

Hardware Platform

Calypso IOProfiler – Real World Workload Tester OS: Hyper-V Server 2012 R2 (same as source capture) Test Software: RTP BE ver 1.9.184 Motherboard: Intel SC2600COE, 32GB DDR3 ECC RAM CPUs: Dual Intel XEON Eight Core W2687v2 3.1Ghz HBA: 6Gb/s LSI 9212

Software Platform

Test Software: IPF 1.05 FE ver 1.18.11 OS: Windows 7 Pro Capture Tool: IPF Win Capture applets

SSD Sample Pool

SSD A - Data Center 2.5" SATA SSD – 960 GB

SSD B - Data Center 2.5" SATA SSD – 800 GB

SSD C - Data Center 2.5" SATA SSD – 960 GB

TestMyWorkload IO Capture Demo #3 - Workload Segment Definition

Workload Segments - Net IO Streams Distribution % by Segments

SSD A Avg TP SSD B Avg TP SSD C Avg TP 600 B D Α C 519 500 466 460 436 Better 400 356 is. Throughput (MB/s) ЧH 312 300 Higher 213 187 185 200 100 67 57 57 51 36 36 0 Cumulative SQL 2 AM Back-up 6 pm to Close 10 am - 4 pm SQL 24 hr Workload Segments 16

Replay - Throughput by Segments: Average MB/s Over Segment

2016 Storage Developer Conference. © Calypso Systems, Inc. All Rights Reserved.

D (16)

Replay - 5 9s Response Time by Segments: Average Over Segment

2016 Storage Developer Conference. © Calypso Systems, Inc. All Rights Reserved.

D (16

Power Consumption by Segments - Average Over Segment

24 Hr Replay - Streaming IOPS

SSD A Avg TP SSD B Avg TP SSD C Avg TP 600 B D Α C 519 500 466 460 436 Better 400 356 is. Throughput (MB/s) ЧH 312 300 Higher 213 187 185 200 100 67 57 57 51 36 36 0 Cumulative SQL 2 AM Back-up 6 pm to Close 10 am - 4 pm SQL 24 hr Workload Segments 16

Replay - Throughput by Segments: Average MB/s Over Segment

Workload Segments - Net IO Streams Distribution % by Segments

6 Hr Write Saturation - Metadata SEQ 0.5K RW50 - IOPS vs Time

24 Hr Replay - Streaming Metadata SEQ 0.5K Writes - IOPS vs Time

²⁰¹⁶ Storage Developer Conference. © Calypso Systems, Inc. All Rights Reserved.

Real World Workloads Are Changing Groups of IOs

SD C

Single SSD WAF: Drive Fills, FTL and WAF for Different Workloads

Take-Aways

- □ SSD Performance Depends on the SSD Workload
- □ IO Streams Change as they Traverse the SW Stack
- □ Replay Storage Workloads are Changing Groups of IO Streams
- □ Individual IO Streams Can Be Compared to Synthetic Benchmarks
- □ IO Workloads Result In Specific Performance & Endurance
- Each Real World IO Capture is Unique to its Time and System

Understand Your SSD Workloads

The Example #3 Workload in this Presentation Can Be Accessed as a Live Demo at

TestMyWorkload.com

Try FREE Capture & Analysis of Your SSD Real World Storage Workloads Today!

감사합니다 Natick Danke Ευχαριστίες Dalu N Thank You Köszönöm Tack **Cпасибо Dank** Gracias の Seé ありがとう

For more information, contact Calypso Systems, Inc.

info@calypsotesters.com

www.calypsotesters.com

