Time to Say Good Bye to Storage Management
with *Unified Namespace, Write Once and Reuse Everywhere* Paradigm

Anjaneya “Reddy” Chagam
Principal Engineer,
Intel Corporation
Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS, COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS’ FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit Intel Performance Benchmark Limitations

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Intel, Intel Core, Intel Inside, Intel Inside logo, Intel Ethernet, Intel QuickAssist, Intel Flow Director, , Intel Solid State Drives, Intel Intelligent Storage Acceleration Library, Itanium,, Xeon, and Xeon Inside are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more information.

No computer system can provide absolute security under all conditions. Intel® Trusted Execution Technology is a security technology under development by Intel and requires for operation a computer system with Intel® Virtualization Technology, an Intel Trusted Execution Technology-enabled processor, chipset, BIOS, Authenticated Code Modules, and an Intel or other compatible measured virtual machine monitor. In addition, Intel Trusted Execution Technology requires the system to contain a TPM v1.2 as defined by the Trusted Computing Group and specific software for some uses. See http://www.intel.com/technology/security/ for more information.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and, for some uses, certain platform software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor.

* Other names and brands may be claimed as the property of others.

Other vendors are listed by Intel as a convenience to Intel’s general customer base, but Intel does not make any representations or warranties whatsoever regarding quality, reliability, functionality, or compatibility of these devices. This list and/or these devices may be subject to change without notice.

Copyright © 2016, Intel Corporation. All rights reserved.
Agenda

- Software Defined Storage (SDS) overview
- Current state of Storage Management and gaps
- “Open SDS Controller” proposal
- Next Steps and Help Needed
Software Defined Storage (SDS) brings “cloud” benefits to storage, including auto-provisioning, self service, and single pane of glass for management.

A key enabler of the new SDS architecture is an **SDS controller** for single pane of management.

Software Defined Storage (SDS) Architecture

SDS CONTROLLER
- Visibility and control of ALL storage resources
- Communication between apps, orchestrator, and storage systems
- Allocates storage resources to meet SLAs

APPLICATIONS

ORCHESTRATOR

SDS CONTROLLER

Storage Systems

- **Open Source + Standard Server**
- **ISV + Standard Server**
- **Traditional (e.g., SAN, NAS, AFA)**
SDS Controller Workflow

SDS Controller (Interoperable, Open APIs)

- **Pre Configured Appliances**
 - Servers with OS, SW
 - Provision (Scaleout Storage System)
 - Assign resource
 - Provision resource
 - Note: Servers already have OS. Focus on 3rd party s/w integration with framework

- **Discover (Storage Capabilities)**
 - Discover storage system, tiers
 - Discover fabric and topologies
 - Discover native capabilities and SLOs

- **Compose (Virtual Pools)**
 - CUDL virtual pools
 - Attach/Detach tiers to virtual pools
 - Native capabilities support
 - Admin UI for pool composition
 - Object support (cloud, on-premise)
 - Service catalogues
 - SLO aware pools

- **Data Type Life Cycle Mgmt**
 - CUDL volumes & shares
 - Attach & Detach volumes & shares
 - Clone, Snapshot, Backup, Extend, Shrink
 - Get volume stats
 - Object store mgmt
 - QoS monitor, alert & enforce Policies, data life-cycle mgmt.
 - SLO based provisioning
 - SDN integration

- **Monitoring and Maintenance**
 - Pool maintenance (add, remove, upgrades, degraded)
 - Storage system maintenance
 - Tier 1 Metrics, Health Metering/Billing
 - Automated data migration

Legend
- CUDL = Create, Update, Delete, List

Discovery and Classification
- Complex policy based orchestration
- Multi-system operations

Scale, HA
- Vendor specific
- Largely ignored, manual
- Most of the focus
- Lots of tools
OpenStack – Cloud Orchestration
Cinder Block Storage flows

Virtual Machine
QEMU/KVM

Nova
VM management

Boot or Attach volume

5
Launch VM

iSCSI, iSER, NFS, RBD etc.

Nova
VM management

Get volume info

4
Get image info

Cinder Block Orchestration

Create volume

1
Create volume

Drivers

Drivers

Horizon Dashboard

QEMU/KVM

Manila
File Share Orchestration

Get volume info

2
Create volume on backend

Drivers

Scale up (SAN, NAS, AFA)

Scale Out

Cinder Block Orchestration

Stats (space etc.)

Backup snapshots

Swift
Object Store

Storage images

Glance
VM template management

Backup snapshots

Identify & Auth
Keystone
Network Orchestration
Neutron
Key Management
Barbican
Telemetry
Ceilometer

Legend:
Control Plane
Data Plane

✔ Production maturity
✔ Broad driver support

- Lacks discovery & pooling automation
- Scheduling, monitoring evolving
Kubernetes – Container Orchestration

- Growing community
- Linux container support
- Storage interfaces evolving
- Storage mgmt. mostly out of scope

API Server → Replication controller → Scheduler

kubelet → proxy

Node

kubelet

proxy

pod
Container

Node

kubelet

proxy

pod
Container

apiServer

replicationController

scheduler

etcd

Persistent Volumes

Scale Out

Scale up (SAN, NAS, AFA)
Several Open Source Options

- **Apache Mesos** - API’s for resource management and scheduling across entire datacenter and cloud environments
- **Docker Swarm** – native clustering for docker
- **CoprHD** - open source software defined storage controller and API platform
- **Apache CloudStack™** - Infrastructure as a Service (IaaS) cloud computing platform
- **HPE Helion Eucalyptus** – open solution for building private clouds that are compatible with Amazon Web Services (AWS)
- Many more - Joyent, OpenNebula etc.
Storage Integration in Cloud Native Computing

- **Persistent volumes w/ resource model** (e.g., storage space, storage time, storage operations)
 - Wide variety of drivers (direct plug-ins, driver for pluggable backends)

- **Data volumes w/ mount points**
 - Wide variety of native drivers (Ceph, EMC RexRay, Flocker, GlusterFS, Azure File Service, iSCSI etc.)

- **Persistent Volumes**
 - Vendor agnostic storage orchestration model, API, and reference client and server implementations

- **Vendor agnostic storage orchestration engine**
 - Design goal is to provide persistent storage for Docker containers as well as Mesos frameworks and tasks

- **Open Storage for Linux Containers**
 - Specifications and reference implementations around an open storage protocol for Linux Containers

- **Kubernetes Plugin**
 - Flexible volume is just not another Kubernetes volume plugin. It enables vendors to develop their own backend drivers or extend their capabilities

- **Open Containers Initiative**

*Other brands and names are the property of their respective owners

Every one is trying to address storage integration but in a different way
State of Storage Management

Different levels of storage abstraction and maturity

Direct or Multi-driver integration

One driver for each product and orchestrator

Need unified abstraction, driver integration

*Other brands and names are the property of their respective owners
An Open SDS Controller Future

OPEN SDS ORCHESTRATION
Provisioning, Data Placement, Data Protection, Data Migration, Local/Remote Replication, Data Security, Lifecycle Management, DR, Tiering, ...

Custom Adapters

Open SDS Adapter (+Cinder +Manila)
CoprHD/ViPR
OceanStor DJ
Others

Common API – Discovery, Configuration, Monitoring

Local Storage SAN NAS AFA Scale-Out

Common Plug-ins

Simplify integration and re-use open source building blocks

NOTE: Orchestration stacks and vendors is a small subset for illustrating the concept
*Other brands and names are the property of their respective owners
Value Proposition

- Solve **real-world storage management problems** for our collective customers
- **Focus on seamless integration** for Kubernetes, Docker, Mesos, OpenStack and others
- **Reuse** open source storage building blocks and driver investments (e.g., Cinder & Manila)
- **Collaborate** among storage vendors, standards bodies, end users in an open source community with momentum and broad developer support
Next Steps and Help Needed

- Discussions in progress with storage vendors, end customers and open source communities
- Tune in for an announcement this year
- Join us in enabling “Open SDS Controller” industry wide effort
THANK YOU