Nimblestorage The Data Feedback Loop Using Big Data to Enhance Data Storage

Shannon Loomis Data Scientist

Sept 19, 2016

Introduction to the InfoSight Platform

- The what, how, and why of big data collection

Case Study #1: Data Change Rates

- How often should you back up your data?

Case Study #2: IO Block Sizes

- How do real world applications send and receive data?
- What does this mean for benchmarking?

InfoSight Platform: The Benefits of Data Collection

InfoSight Platform: Big Data

The Four V's of Our Big Data Infrastructure

1. Variety

- 1,000-10,000 independent sensors collected per second
 - Describing hardware and virtual "objects" e.g. volumes, VMs
- Configuration, status, and log data
- Stack: Network, Server, and Application stats

2. Velocity

- According to need:
 - Real-time event-driven alerts
 - Payloads increasing in size from 5 minutes to daily

3. Volume

- Over 350 TB 16-node Vertica database footprint for over 8,200 customers
- Over 450 Billion log events schematized

4. Veracity

- Data logging and sensor collection built into the foundation of the Nimble OS from day-1

Introduction to the InfoSight Platform

- The what, how, and why of big data collection

Case Study #1: Data Change Rates

- How often should you back up your data?

Case Study #2: IO Block Sizes

- How do real world applications send and receive data?
- What does this mean for benchmarking?

imblestorage i

Data is doubling every 2 years and changing the data protection landscape.

82%

Growth, Change Rates and Data Protection

- Data changes are influenced by writes, but how?
 - Compression, deletes, and overwrites mean that writes:data change isn't 1:1
 - Is linear? Or some other functional form?
- If we know how fast data is changing on one timescale, can we multiply it out to estimate how much will change on another?
 - E.g. My average daily snapshot is 1 GB does that mean my average weekly would be 7GB?

- Positive relationship, but sublinear
 - Snap 14% of 10 GiB written
 - Snap 9% of 100 GiB written
- Application specific
 - Oracle and VDI almost linear
 - Largest snap:write ratio decrease with Exchange and SQL Server

Maximal space savings after many writes for Exchange and SQL Server, minimal for Oracle and VDI

Growth, Change Rates and Data Protection

- Data changes are influenced by writes, but how?
 - Compression, deletes, and overwrites mean that writes:data change isn't 1:1
 - Is linear? Or some other functional form?
- If we know how fast data is changing on one timescale, can we multiply it out to estimate how much will change on another?
 - E.g. My average daily snapshot is 1 GB does that mean my average weekly would be 7GB?

Data Change vs. Time

nimblestorage

- Short time (<1hr):
 - VDI, Virtual Server,
 Exchange = Fast (0.1-0.2
 GiB/hr)
 - All others slow (<0.05 GiB/hr)
- Long time (1 week):
 - Runaway VDI
 - Oracle much bigger due to near-linear accumulation

Snapshot VDI and Oracle frequently, SQL Server, Sharepoint, and File Server less often

- Data changes are sublinear with respect to both time and data written
 - VDI and Oracle are the closest to linear
- Data change/data written decreases with time
 - Exception is File Server files are put on server and rarely edited

Snapshot Frequency Recommendations:

Very Often: VDI and Oracle

Little capacity savings with time

Less Often: SQL Server, Sharepoint, and File Server

• Slow change, significant savings with time

User Discretion: Virtual Server and Exchange

Fast change, significant savings with time

Introduction to the InfoSight Platform

- The what, how, and why of big data collection

Case Study #1: Data Change Rates

- How often should you back up your data?

Case Study #2: IO Block Sizes

- How do real world applications send and receive data?
- What does this mean for benchmarking?

How do applications reconcile efficiency tradeoffs?

Scalitstan Sidemen Performik hiterenetti **sizesho**rt petionizef itdolsized amaMB/s

_ _ _ _ _

We can use the InfoSight minutely application IO request sensors from thousands of customers to address this question

rkfænd qiæized: moverme datatin a hizeriod #1 ationsize some at nize data throughput

IO Size

Operation Sizes:

- 59% of IO $\leq 8k$
- 24% of IO ≥ 64k
- 17% of IO in 8k-64k range

Suggests "divide and conquer"

How do we know bimodality is "divide and conquer" and not different arrays?

Individual IO Size Histogram

from Nimble Storage Customer Data (Feb. 2016)

each point is an aggregate of a single array or application deployment

Operations

Individual Deployments: Plot Overview

Transfer specialized MB/sec achievable

⇒ nimblestorage

IO Size

Individual Deployments: Entire Array

Individual Deployments: Whole Array

Virtual Server

Operation Sizes:

- Most IO 4k bin
- 2nd peak at 128k

Data Transfer:

- Reads mostly transfer optimized
- Writes "divide and conquer"

Operation Sizes:

- Most IO 4k bin
- Little to no large IO peak

Data Transfer:

- Reads and writes "divide and conquer"
- Reads more variable

VDI like Virtual Servers but more transaction optimized

Oracle 35 Reads 30 Writes Percent of IO 25 Both \mathbb{Z} 20 **Operation Sizes:** 15 10 Most IO 8k bin 5 0 • 2nd small peak at 128k [256,512) [64,128) [128,256) [0,0,5] [0.5,1] 12 [2,4) [8,16) [16,32) [32,64) 512+ (4 8) IO Size [KiB] **Data Transfer:** a hitter a state of Reads mostly transfer 64kB (%) Data Read >= 64kB (%) optimized 75% 75% Writes mostly "divide and П conquer", leaning towards Ä 50% 50% Data Written transaction specialized 25% 25%

© 2016 Nimble Storage

Mapping the Demands of Real-World Apps - One IO at a Time | White paper by David Adamson

25% 50% 75%

Read Operations <= 8kB (%)

25% 50% 75%

Write Operations <= 8kB (%)

SQL Server

Operation Sizes:

- Most IO 8k bin
- 2nd large peak at 128k

Data Transfer:

- Reads transfer optimized
- Writes split between "divide and conquer" and transfer

SQL Server more transfer optimized than Oracle

File Servers

Operation Sizes:

- Most IO 4k bin
- Small secondary peak

Data Transfer:

- Reads transfer optimized
- Writes split between "divide and conquer" and transfer

Mapping the Demands of Real-World Apps - One IO at a Time | White paper by David Adamson

Sharepoint

Operation Sizes:

- Most IO 4k-8k
- Smaller peaks at 0.5k &128k

Data Transfer:

- Reads transfer optimized
- Writes split between "divide and conquer" and transaction

File Servers transfer optimized Sharepoint transaction optimized

Exchange 2007

Operation Sizes:

- Most IO 8k bin
- Little to no large IO peak

Data Transfer:

- Reads transaction optimized
- Writes split between "divide and conquer" and transaction

Mapping the Demands of Real-World Apps - One IO at a Time | White paper by David Adamson

Exchange 2010

Operation Sizes:

- Writes peaks: 4k and >= 32k
- Reads peak: >= 32k

Data Transfer:

- Reads transfer optimized
- Writes split between "divide and conquer" and transfer

Paradigm shift from transaction to transfer optimized

- Most operations take place at lower IO sizes, most throughput done at larger IO sizes
- Reads tend to be transaction optimized, writes "divide and conquer", but the balance is application specific
- No applications "split the difference"

Benchmarking Recommendations:

- Take IOPS measurements at small (≤8 KB) IO sizes
- Take throughput (MBPS) measurements at large (≥64 KB) IO sizes

These are the IO sizes in which business application do their work.

Insights from Combined IO and Change Rate Studies

⇒ nimblestorage

File Sharing

• File Server transfer optimized because files uploaded with little future editing

 Sharepoint transaction optimized because lots of small changes and overwrites

Snapshot Interval (day)

Introduction to the InfoSight Platform

- Big data collection/analysis can show you how storage and applications interact, providing insights for engineers and customers
- Case Study #1: IO Block Sizes
 - Real world applications can be transfer optimized, transaction optimized, or take part in both
 - None perform significant IO at intermediate (e.g. 32k) block sizes
- **Case Study #2: Data Change Rates**
 - Change rates vary by time and application, and these relationships are less than linear

Data Velocity Delivered

Backup Slides

© 2016 Nimble Storage

Array Averages are Misleading and Mask the Underlying Distribution

Individual IO Size Histogram from Nimble Storage Customer Data (Feb. 2016)

Average IO Size Histogram from Nimble Storage Customer Data (Feb. 2016)

Insights from Individual Deployments: Splunk

nimblestorage

Splunk

Operation Sizes:

- Most IO 4k bin
- No large IO peak

Data Transfer:

- Reads mostly transfer optimized
- Writes "divide and conquer"

Exchange 2003

Operation Sizes:

- Most IO 4k bin
- Little to no large IO peak

Data Transfer:

- Reads transaction optimized
- Writes split between "divide and conquer" and transaction

Exchange 2007

Operation Sizes:

- Most IO 8k bin
- Little to no large IO peak

Data Transfer:

- Reads transaction optimized
- Writes split between "divide and conquer" and transaction

Switch from 4k to 8k between 2003 and 2007

Exchange 2010

Operation Sizes:

- Writes peaks: 4k and >= 32k
- Reads peak: >= 32k

Data Transfer:

- Reads transfer optimized
- Writes split between "divide and conquer" and transfer

Switch from transaction (2007) to transfer optimized (2010)

Exchange 2013

Operation Sizes:

- Writes peaks: 4k and >= 32k
- Reads peak: >= 32k

Data Transfer:

- Reads transfer optimized
- Writes mostly "divide and conquer"

2013 slightly more transactional than 2010

Security Considerations

- Content
 - Never any Customer Data sent from array
 - More details on next slide
- Transport
 - Encrypted Data in Transit
 - Authenticated data transfer
- Backend Data Center (ViaWest)
 - SSAE 16 / ISAE 3402 dual-standard certified
 - SOC 1 type 2, SOC 2 type 2 and SOC 3 reporting
- Engineering
 - Static code and penetration analysis completed before each release
 - CISSP Engineers on InfoSight staff
- Policy
 - Data Security policy in place and available for review in InfoSight Portal

- Heartbeat (always on)
 - Basic near-real-time health information (every 5 min)
 - Disabled by customer firewall rule
 - Https only
- Alerts (opt-in)
 - Real-time event notification from array
 - Limited dataset to open case and initiate proactive support
 - Https (default) or email
- AutoSupport (opt-in)
 - Product operational data to enable predictive analytics support
 - configuration, events, stats
 - Https only

imblestorage ≈ nimblestorage

