
2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 1

Programming the Path

James Westland Cain, Ph.D
Snell Advanced Media

V 0.9.9 (beta)



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 2

Programming the Path – Agenda

 Introduction & Motivation
 What is a Virtual Filesystem (VFS)?
 Types of Function Call in a VFS
 Demos - Simple Parameterised Paths
 Path character constraints (in Windows)
 Python on the Path
 Demos - Simple Python Expressions



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 3

Programming the Path – Agenda

 Function Composition
 Demos - Complex & Compound Expressions
 Security (really!)
 Analysis & Problems
 Why Do This?
 Conclusions & Future Research



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 4

Introduction – James Westland Cain

 Principal Architect – Software @ Snell Advanced Media
 I code every day – as well as being arm waver in chief!
 Been coding for nearly 40 years, at SAM for nearly 20!
 My research interests include file systems innovation 

and browser based video production. 
 PhD in Advanced Software Engineering from Reading 

University 
 Visiting Research Fellow at Brunel University 



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 5

Introduction – Snell Advanced Media

 SAM makes hardware and software that our customers 
use to make News & Sports TV & Feature Films

 Our customers include BBC, SKY, Fox Sports, Disney, 
ESPN, CNN, NBC, NEP, F1 & many others globally

 Most films have been touched by our technologies
 Nearly all 3D movies have been dimensionalised in 

retrospect using our equipment (sorry)!



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 6

Motivation – Programming the Path

 We build video effects & editors 
 Mainly written in C++ & Cuda
 Offers a number of interfaces – including a Virtual File System (VFS)
 The VFS is an SMB2/3 server – running in user mode on Windows!
 Last year I embedded Python and added a rich API to the C++
 I have been trying to build a Domain Specific Language (DSL) to 

allow my Python API to express all the edits and effects we make



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 7

Motivation – Domain Specific Language

 The DSL text can be stored & run from files, but what if 
we could actually embed the language in the file paths 
we use to access the files in the VFS?

 Looking to build a DSL that could represent edit 
decisions and effects parameters in file paths

 I tried building a little parser in Python …
 Then I realised it was easier just to use Python!



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 8

Motivation – Context

 ‘What if ’
… are the most dangerous pair of words in English 

 It is better to ask for forgiveness, than permission.

 This is a research idea – not in production!

 Questions & Feedback most welcome!



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 9

Virtual Filesystems

 SMB (along with NFS & other NAS protocols) prescribe 
a set of network function calls that a server needs to 
implement.

 The implied (assumed) model offers folders full of files, 
with CRUD semantics.

 As long as they honour the semantics of the model, 
sever implementers can do anything they like whilst 
answering a network request.



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 10

Virtual Filesystems

 The contents of a file do not need to be predetermined –
as long as they appear stable. 
(C.f. https://en.wikipedia.org/wiki/Turing_test) 

 This frees the server to interpret an SMB request as 
a function call.

 The SMB protocol can be seen as an API Gateway

https://en.wikipedia.org/wiki/Turing_test


2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 11

Virtual Filesystems

 Example: On receipt of SMB2_Create, there is no need to be 
constrained to only offer the files listed in SMB2_Find.

 This frees the server to interpret the folder path – it can contain 
state.
 Ideas brought from REST and HATEOAS - storing state in the 

URL.
https://www.snia.org/sites/default/orig/sdc_archives/2010_presentations/thursday/JamesCain_RESTful_Filesystems.pdf

 So the strings used in the filepath can have meaning
 Demo: The Server can control a file’s contents.

https://www.snia.org/sites/default/orig/sdc_archives/2010_presentations/thursday/JamesCain_RESTful_Filesystems.pdf


2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 12

Windows Reserved Characters

 < (less than)
 > (greater than)
 : (colon)
 " (double quote)
 / (forward slash)
 \ (backslash)
 | (vertical bar or pipe)
 ? (question mark)
 * (asterisk)



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 13

Non alphanumeric symbols in ascii

 (sp)!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~
 Characters not allowed in a file path: \/:<>|*"?
 Allowed: (sp)!#$%&'()+,-.;=@[]^_`{}~
 In Python we can express quite a lot with these!



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 14

Example Allowed Python operators
 Function Parameters: () (round brackets)
 Function Parameter Separator: , (comma)
 Strings: ' ' (single quotes)
 Lists & comprehensions: [] (square brackets)
 Sets & comprehensions: () (round brackets)
 Dictionaries & comprehensions: {} (curly brackets)
 (Optional) Statement terminator: ; (semi-colon)
 Equality: == != (equals, not equals)



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 15

Demo: Calling Functions

 vlc.exe \\127.0.0.1\quantel\zone-
1\clips\ports\compose;timeline()\essence.mxf

 Folder: compose;timeline()
 mspaint \\127.0.0.1\quantel\zone-1\clips\stills\compose; 

t()\1200.bmp
 Folder: compose;t()
 Both timeline() and t() are Python function calls



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 16

Folder syntax

 Idiomatic syntax – demonstrates the technique
 <Python File Name>;<Python Code>
 The VFS looks for <Python File Name>.py
 The VFS passes <Python Code> in a variable called 

__params__
 In the Python we call eval(__params__)
 Demo: open the code



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 17

More examples – function parameters 

 These are valid Python Folder names:
 seg(t(),1100,1200)
 text(t(),'Hello James’)
 sat(t(),0)



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 18

More examples – lists

 These are valid Python Folder names:
 edit([t(),t()])
 edit([seg(t(),1100,1200),seg(t(),1100,1200)])



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 19

More examples – comprehensions

 These are valid Python Folder names:
 edit((seg(t(),1100,1200) for x in xrange(100)))
 edit((seg(t(),800+x,900+x) for x in xrange(0,300,50)))



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 20

Security

 This technique can’t possible be secure – can it?
 Sign all the time – no man in the middle
 Encrypt – hide what you’re up to
 Know your clients!!! 

 We’re in a vertical niche market.
 Limit Python built ins …



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 21

Security - Making eval() safe

 In Python, eval() expects an expression
 Expressions are constrained so that no assignment is allowed

 This prevents building up state between calls that might have side 
effects.

 eval() takes three parameters
 Expression to run
 Globals
 Locals

 Limit access to builtins avoids clients running mischievous commands using 
‘os’ etc.



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 22

Security - Making eval() safe

 #make a list of safe functions
 safe_list = ['text', 'sat', 'e', 'edit', 's', 'seg', 't', 'timeline', 'c', 'clip']
 #use the list to filter the local namespace
 safe_dict = dict([ (k, locals().get(k, None)) for k in safe_list ])
 #add any needed builtins back in.
 safe_dict['xrange'] = xrange
 # remove the nasty builtin functions
 safe_dict["__builtins__"] = None
 Clip = eval(__params__, safe_dict)



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 23

Security – Computer says ‘no’

 Demo – bad syntax! 
 Demo – bad intentions!
 The VFS always has the right to halt proceedings and 

return an error on receipt of an SMB packet.
 We can even dump the python error stack in the VFS log 

to aid debugging 



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 24

Problems

 Disallowed Symbols
 Line Length
 Capitalisation
 Decimal Point has odd semantics (Mime types)  



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 25

Problem: Disallowed Python operators

 End of if/while statement: : (colon)
 Mitigation: loop using comprehensions

 Slicing: : (colon)
 Mitigation: Make sub range function

 Control Blocks – no hard returns with whitespace layout
 Possible Mitigation: Compound using ; (semi-colon)



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 26

Problem: Disallowed Python operators

 Comparison: <> (less or greater than)
 Mitigation: Make comparison functions

 Strings containing paths: \/ (backslash or forward-slash)
 Mitigation: (URL) character escaping: %47 %92

 Assignment: = (equals) (not Windows – due to using eval())
 This is good, as it stops clients changing persistent server state.



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 27

Problem: Line Length

 Classic Windows limits a filepath to MAX_PATH characters
 MAX_PATH is defined as 260

 You can add a prefix \\?\UNC\, that extends this to 32,767!
 Demo – long paths.

 Windows 10, version 1607, MAX_PATH limitations have been 
removed from common Win32 file and directory functions. 

 You must opt-in to the new behavior
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx

 Either use the registry to opt in
 Add a manifest to your program

https://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx


2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 28

Problem: Line Length - Bugs

 This data-structure was at 
the heart of some core 
processing in our code 
base.

 Note MAX_PATH in 
cFileName.

typedef struct _WIN32_FIND_DATAW {
DWORD dwFileAttributes;
FILETIME ftCreationTime;
FILETIME ftLastAccessTime;
FILETIME ftLastWriteTime;
DWORD nFileSizeHigh;
DWORD nFileSizeLow;
DWORD dwReserved0;
DWORD dwReserved1;
WCHAR cFileName[ MAX_PATH ];
WCHAR cAlternateFileName[ 14 ];

} WIN32_FIND_DATAW, *PWIN32_FIND_DATAW, 
*LPWIN32_FIND_DATAW;



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 29

Problem: Capitalisation

 Windows NTFS is (generally) case insensitive, but case preserving
 When used in Linux it is case sensitive too

 Therefore SMB3 honours case as proffered to CreateFile etc
 Thus strings such as ‘James’, can be passed correctly – in theory!

 Not all Windows applications do 
 For example IIS can lower case some URLs before passing them to the 

filesystem



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 30

Problem: Decimal Point semantics

 What does this string mean: (2.5)
 Is it two and a half in brackets
 Is it a file called (2, with a mime type of 5)?

 SMB sees it as the first interpretation.
 IIS sees it as the second.



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 31

Why do this?

 File systems are pervasive
 We can add *new* functionality to (legacy) applications without their 

permission
 We can be lazy – we can make files just in time – rather than just in case
 We can be speedy – we can appear to make files instantly, without having 

to wait for one job to finish before the next can start
 We can start to expose the recipe and ingredients rather than just the 

pre-baked result
 It enables interesting workflows by empowering the client … 

… breaking the hegemony of the file server!



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 32

Future Research

 File systems are destructive
 The processes & recipes used to build the contents of a file are 

not stored by normal filesystems.
 Rendering video is lossy

 Provenance aware filesystems have been discussed in academia.
 Consider how to make recipe folders from internal settings?

 If files are built using recipes, can recipes also be exposed as 
folders (ie can this be a duplex connection)?



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 33

Future Research

 What about other Client OSes: OS-X, Linux?
 Do these folders surprise other client applications?
 What does it mean to write through a recipe folder?

 I have yet to consider how this technique might be used 
in production – and what customers might say … ;-)



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 34

Conclusions

 Once you have a VFS – many assumptions about file system 
constraints can be questioned

 I previously (SDC: 2015) talked about Delaying (even Stopping) the 
VFS server and what benefits that can bring
http://www.snia.org/sites/default/files/SDC15_presentations/file_sys/JamesCain_A_Pausable_File_System.pdf

 Having programming text in a folder name allows a client to inform a 
VFS of intent, context, requirements, or even recipes

 The technique does rely on having an underlying model and API 
which can be manipulated

http://www.snia.org/sites/default/files/SDC15_presentations/file_sys/JamesCain_A_Pausable_File_System.pdf


2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 35

Questions?

 james.cain@s-a-m.com



2017 Storage  Developer Conference. © Snell Advanced Media.  All Rights Reserved. 36

Appendix: Example Command lines
 http://127.0.0.1/quantel/zone-1/clips/stills/compose;timeline()/1330.800.jpg
 http://127.0.0.1/quantel/zone-1/clips/stills/compose;sat(timeline(),0)/1330.800.jpg

 mspaint \\127.0.0.1\quantel\zone-1\clips\stills\compose;timeline()\1220.bmp
 mspaint \\127.0.0.1\quantel\zone-1\clips\stills\compose;sat(timeline(),0)\1210.bmp

 mspaint "\\127.0.0.1\quantel\zone-1\clips\stills\compose;text(t(),'hello there’)\1110.bmp"
 mspaint "\\127.0.0.1\quantel\zone-1\clips\stills\compose;text(t(),'Hello James’)\1120.bmp"

 "C:\Program Files\VideoLAN\VLC\vlc.exe" \\127.0.0.1\quantel\zone-1\clips\ports\compose;timeline()\essence.mxf
 "C:\Program Files\VideoLAN\VLC\vlc.exe" \\127.0.0.1\quantel\zone-1\clips\ports\compose;t()\essence.mxf
 "C:\Program Files\VideoLAN\VLC\vlc.exe" \\127.0.0.1\quantel\zone-1\clips\ports\compose;seg(t(),1100,1300)\essence.mxf
 "C:\Program Files\VideoLAN\VLC\vlc.exe" \\127.0.0.1\quantel\zone-1\clips\ports\compose;s(t(),1100,1300)\essence.mxf
 "C:\Program Files\VideoLAN\VLC\vlc.exe" \\127.0.0.1\quantel\zone-1\clips\ports\compose;e(s(t(),1100,1200),s(t(),1100,1200))\essence.mxf
 "C:\Program Files\VideoLAN\VLC\vlc.exe" \\127.0.0.1\quantel\zone-

1\clips\ports\compose;e([s(t(),1100,1150),s(t(),1100,1150),s(t(),1100,1150),s(t(),1100,1150)])\essence.mxf

 "C:\Program Files\VideoLAN\VLC\vlc.exe" "\\127.0.0.1\quantel\zone-1\clips\ports\compose;edit((seg(timeline(),1100,1200) for x in xrange(100)))\essence.mxf"
 "C:\Program Files\VideoLAN\VLC\vlc.exe" \\127.0.0.1\quantel\zone-1\clips\ports\compose;edit((seg(timeline(),800+x,900+x) for x in xrange(0,300,50)))\essence.mxf

 "C:\Program Files\VideoLAN\VLC\vlc.exe" \\?\UNC\127.0.0.1\quantel\zone-
1\clips\ports\compose;edit([seg(t(),1100,1200),seg(t(),1100,1200),seg(t(),1100,1200),seg(t(),1100,1200),seg(t(),1100,1200),seg(t(),1100,1200),seg(t(),1100,1200),seg(t(),
1100,1200),seg(t(),1100,1200),seg(t(),1100,1200),seg(t(),1100,1200),seg(t(),1100,1200),seg(t(),1100,1200),seg(t(),1100,1200),seg(t(),1100,1200),seg(t(),1100,1200),seg
(t(),1100,1200),seg(t(),1100,1200),seg(t(),1100,1200),seg(t(),1100,1200),seg(t(),1100,1200),seg(t(),1100,1200),seg(t(),1100,1200),seg(t(),1100,1200),seg(t(),1100,1200),
seg(t(),1100,1200),seg(t(),1100,1200),seg(t(),1100,1200),seg(t(),1100,1200)])\essence.mov


	Programming the Path
	Programming the Path – Agenda
	Programming the Path – Agenda
	Introduction – James Westland Cain
	Introduction – Snell Advanced Media
	Motivation – Programming the Path
	Motivation – Domain Specific Language
	Motivation – Context
	Virtual Filesystems
	Virtual Filesystems
	Virtual Filesystems
	Windows Reserved Characters
	Non alphanumeric symbols in ascii
	Example Allowed Python operators
	Demo: Calling Functions
	Folder syntax
	More examples – function parameters 
	More examples – lists
	More examples – comprehensions
	Security
	Security - Making eval() safe
	Security - Making eval() safe
	Security – Computer says ‘no’
	Problems
	Problem: Disallowed Python operators
	Problem: Disallowed Python operators
	Problem: Line Length
	Problem: Line Length - Bugs
	Problem: Capitalisation	
	Problem: Decimal Point semantics
	Why do this?
	Future Research
	Future Research
	Conclusions
	Questions?
	Appendix: Example Command lines

