
2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 1

Linux Optimizations for
Low-Latency Block Devices

Stephen Bates, PhD
Raithlin Consulting

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 2

Nomenclature: A Reminder

Low-Latency
Block

Devices are
NOT blucky!!

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 3

Linux Block Devices: A Reminder

 A Linux block device is a software construct that may be
backed by a real device:
 /dev/nullb0 – backed by nothing!
 /dev/pmem0 – backed by Persistent Memory
 /dev/nvme0n1 – backed by NVMe attached stuff.
 /dev/sda1 – backed by SCSI attached stuff
 /dev/nbd0 – backed by network attached stuff
 /dev/md0 – backed by multiple block devices

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 4

Block Devices: A Reminder

 A physical block device has some important
attributes:
 Can be accessed randomly.
 Is sector/block based (e.g. 512B or 4KB etc).
 Sector/block operations are atomic (i.e. they either

happen in their entirety or not at all).
 Often involve DMA engines (the Jeeves of the CPU

world).

DMA Engine

CPU

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 5

Block Devices: A Reminder

Physical: PCIe or DDR
or SATA or SAS etc.

Logical: NVMe or SCSI
or DDR-T or
OpenGenCCIX etc.

NVM
NVM

NVM
NVM

ONFI or
Toggle or
DDR-T or
DDR etc.

Host I/F
RTL
(inc.

DMA)

NVM
Interface

RTL

ECC
RTL

DDR
I/F

RTL

CPU

DRAM
DRAM

DRAM

DDR

Host
CPU

Note: DRAM might be
optional in certain
incarnations.

The innards of a NVM based block device

Controller

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 6

Latency: A reminder

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 7

Persistent Memory: A reminder

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 8

Persistent Memory: A reminder

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 9

So Why Block?

Good QoS

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 10

So Why Block? Bates-Conjecture: For any new
NVM media, block will come to
market first!

The RBER needed to hit
1e-18 UBER is 8 orders of
magnitude less for block
than for byte access.

Easier to make materials
work at 1e-3 than 1e-11!As access size increases,

required media RBER
drops!

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 11

Low-Latency Block Devices Are Here…

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 12

And They’re Pretty Frickin’ Fast!

 Sub 5us latency for
512B at QD=1.

 Measured via FIO on
a 4.12 based Linux
kernel. 4.81

4.88

5.27

8.23

22.22

136.57

255.7

0 50 100 150 200 250 300

512

1024

4096

16384

65536

524288

1048576

Latency (uS)

Bl
oc

k
Si

ze
 (

B)

Latency vs Block Size (Random Read, QD=1)

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 13

Oh and the QoS is really good

Good QoS

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 14

Oh and the QoS is really good

Good (if whacky) QoS

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 15

Reminder: An NVMe Read Command
1. Host1 puts 64B NVMe command on a submission queue located in

either main or io memory (e.g. CMB).
2. Host1 rings doorbell (PCIe MMIO register) associated with the

queue in step 1.
3. SSD pulls in 64B command, it will include information on LBAs to

be read from NVM and location in memory to place resultant data.
4. SSD pulls relevant LBAs from NVM and DMAs result to desired

location (optionally via SGL).
5. SSD places 16B NVMe completion entry on relevant completion queue.
6. (Optional) SSD asserts an interrupt to inform system the IO is done.

1 OK, technically the host does not have to do this. Another IO device could
do this (e.g. Mellanox CX5 NVMe offload engine)

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 16

Reminder: An NVMe Read Command

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 17

OK, Got to Mention SPD ”F%^King” K ;-)

 OK, ok, SPDK will beat
the kernel for latency

 However it comes at a
cost (no FS, no
blktrace, no iostat etc)

 So, how well can the
kernel do?

https://github.com/spdk/spdk

Same SSD and IO pattern. How
applications access device alters mean
and PDF of latency!

SPDK reduces
latency, but at
what cost?

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 18

 The Linux block layer
must be all things to all
people.

 Not manically focused
on latency and
performance.

 However it does evolve!

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 19

Polling Baby!

 The ability for the block
layer to poll was added in
v4.4.

 Support for NVMe polling
was also added in v4.4.

 Trades CPU cycles for
latency.

Testing done on Intel® OptaneTM SSDs1

using this script2.

Mode Avg. 99 CPU

No Poll 9.1u 17.5u 28.7%

Poll 7.4u 14.3u 100%

1 4.12 kernel, Intel® SSDPED1K375GAQ
375GB OptaneTM SSD, fio, 512B
randread.
2 https://github.com/sbates130272/fio-
stuff/blob/master/misc/iopoll-test.sh

https://github.com/sbates130272/fio-stuff/blob/master/misc/iopoll-test.sh

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 20

Hybrid Polling Baby!
 Why poll from time 0?
 Wait for a while, then poll.
 Right now start polling at

half average completion
time (or set your own
time).

 Added in v4.10

Mode Avg. 99 CPU

No Poll 9.1u 17.5u 28.7%

Poll 7.4u 14.3u 100%

Hybrid 7.3u 14.7u 58%

Hybrid almost as good as polling but
saves ~40% CPU load!

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 21

More Hybrid Polling Baby!
 Block layer only polls on direct

IO issued by the preadv2 and
pwritev2 system calls

 Still being tied into glibc
 FIO directly makes syscall for

now.
 We can alter what percentage

of IO are hipri and see what
happens

More priority IO means more
polling. Lower latency, more
CPU load

Connects Applications
to NVMe SSDs!

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 22

(Better) Hybrid Polling Baby!
 Why use same delay for

all IO sizes?
 Calculate sleep IO size

for each IO size (within
reason)

 Added in v4.12.

Use mean/2 for the
relevant IO size.

Also see great Vault paper by Damien Le Moal from WD -
https://vault2017.sched.com/event/9WQX/io-latency-
optimization-with-polling-damien-le-moal-western-digital

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 23

(Even Better) Hybrid Polling Baby!
 Why use mean/2?
 Ideally we want to poll after the minimum response

time minus some wakeup time.
 So let’s try that!

Ideal Sleep Time = Minimum Response Time – Maximum Wake Time

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 24

(Even Better) Hybrid Polling Baby!
Altering the waketime allows for a trade-
off between average latency and CPU
usage.

The extremes represent legacy hybrid
polling (0) and legacy polling (10000).

In this system a 2us sleep time is the
sweet spot!

Submitted this code for consideration
for Linux kernel1.

1 https://lkml.org/lkml/2017/8/21/486

Wake time
too short,

we wake up
too late!

Wake time too long, are
needlessly polling!

The Sweet
Spot!

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 25

What’s Next?

 Industry is (manically) focused on QoS.
 RWF_HIPRI first of many flags to help place data on NVMe SSDs
 SSDs getting better at QoS and data placement:

 Streams – added in 4.13 (tied into IO lifetime)
 Directives and IO determinism
 IO priority
 IO expected lifetime
 OpenChannel

 The Linux kernel will add support for these features

2017 Storage Developer Conference. © Raithlin Consulting. All Rights Reserved. 26

Thanks!

A big Thank You to Intel® for providing access to
their NVMe OptaneTM SSDs for this work.

	Linux Optimizations for�Low-Latency Block Devices
	Nomenclature: A Reminder
	Linux Block Devices: A Reminder
	Block Devices: A Reminder
	Block Devices: A Reminder
	Latency: A reminder
	Persistent Memory: A reminder
	Persistent Memory: A reminder
	So Why Block?
	So Why Block?
	Low-Latency Block Devices Are Here…
	And They’re Pretty Frickin’ Fast!
	Oh and the QoS is really good
	Oh and the QoS is really good
	Reminder: An NVMe Read Command
	Reminder: An NVMe Read Command
	OK, Got to Mention SPD ”F%^King” K ;-)
	Slide Number 18
	Polling Baby!
	Hybrid Polling Baby!
	More Hybrid Polling Baby!
	(Better) Hybrid Polling Baby!
	(Even Better) Hybrid Polling Baby!
	(Even Better) Hybrid Polling Baby!
	What’s Next?
	Thanks!

