FC-NVMe Tutorial
About the presenter

- **Presented by: Craig W. Carlson**
 - Senior Technologist, Cavium
 - Member of SNIA Technical Council
 - Chair of FC-NVMe working group within T11
 - Chair T11.3 Committee on Fibre Channel Protocols
 - FCIA Board Member
- Thanks also to J. Metz of Cisco for contributing content
Agenda

- FC Refresher
- NVMe Refresher
- FC-NVMe
- Why Use FC-NVMe?
- Summary
What This Presentation Is

- A reminder of how Fibre Channel works
- A reminder of how NVMe over Fabrics work
- A high-level overview of Fibre Channel and NVMe, especially how they work together
What This Presentation Is Not

- A technical deep-dive on either Fibre Channel or NVMe over Fabrics
- Comprehensive (no boiling the ocean)
- A comparison between FC and other NVMe over Fabrics methods
Fibre Channel Refresher
What is Fibre Channel?

- A network purpose-built for storage
- A physical connection between a host and its storage
- A logical (protocol) connection between a host and its storage
Design Requirements

- **Fibre Channel Storage Area Network (SAN)**
 - Goal: Provide one-to-one connectivity
 - Transport and Services are on same layer in same devices
 - Well-defined end-device relationships (initiators and targets)
 - Does not tolerate packet drop – requires lossless transport
 - Only north-south traffic, east-west traffic mostly irrelevant

- **Network designs optimized for Scale and Availability**
 - High availability of network services provided through dual fabric architecture
 - Edge/Core vs. Edge/Core/Edge
 - Service deployment
Design Elements

- Terminology that covers components or parts of the system
- Terminology that talks about the end-to-end system
For FC the adapter which sits in a Host is called an HBA (Host Bus Adapter)
- Equivalent to a NIC for Ethernet
- Where protocols such as NVMe or SCSI get encapsulated into a Fibre Channel Frame
Fabric intelligence is most often kept in the switch

The Name Server
- Repository of information regarding the components that make up the Fibre Channel network
- Name Server is implemented in the Fabric as a distributed redundant database
- Components, like HBAs, can register their characteristics with the Name Server
- Name server knows *everything* that goes on in the Fabric
Fibre Channel typically uses an Unacknowledged Datagram Service

- Known as “Class 3”
- Defined as a reliable datagram (connectionless) service
 - A class 3 frame will not be dropped unless an error occurs (i.e., bit error, or other unrecoverable error)
Fibre Channel data transfer has 3 fundamental constructs

- Frames – A “packet” of data
- Sequences – A set of frames for larger data transfers
- Exchanges – An associated set of commands and responses that make up a single command
Frames

❖ Each unit of transmission is called a “frame”
 • A frame can be up to 2112 bytes
 • Each frame consists of a FC Header, payload, and CRC
Sequences

- Multiple frames can be bundled into a “Sequence”
 - A Sequence can be used to transfer a large amounts of data possibly up to multi-megabytes (instead of 2112 bytes for a single frame)
Exchanges

An interaction between two Fibre Channel ports is termed an “Exchange”

- Many protocols (including SCSI and FC-NVMe) use an Exchange as a single command/response
- Individual frames within the same Exchange are guaranteed to be delivered in-order
- Individual exchanges may take different routes through the fabric
 - This allows the Fabric to make efficient use of multiple paths between individual Fabric switches

```
SEQUENCE
FRAME FRAME FRAME FRAME

EXCHANGE
```
Discovery in a FC Network

- Handled through the FC Name Server
- Many port attributes are automatically registered to the FC Name Server (e.g., Node WWN, Port WWN, Protocol types, etc.)
 - Every Fibre Channel port and node has a hard-coded address called **World Wide Name** (WWN)
 - WWNN uniquely identify **devices**
 - WWPN uniquely identify each **port** in a device

Example WWN

WWN: 20:00:00:45:68:01:EF:25

Example WWNs from a Dual-Ported Device

<table>
<thead>
<tr>
<th>WWNN</th>
<th>20:00:00:45:68:01:EF:25</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWPN A</td>
<td>21:00:00:45:68:01:EF:25</td>
</tr>
<tr>
<td>WWPN B</td>
<td>22:00:00:45:68:01:EF:25</td>
</tr>
</tbody>
</table>
Zones/Zoning

- Zones provide added security and allow sharing of device ports
- Zoning allows a FC Fabric to control which ports get to see each other
 - Zones can change frequently (e.g. backup)
- Zoning is implemented by the switches in a Fabric
 - Similar to ACLs in Ethernet switches
 - Central point of authority
 - Zoning information is distributed to all switches in the fabric
 - Thus all switches have the same zoning configuration
- Standardized
Fibre Channel Protocol

- Fibre Channel has layers, just like OSI and TCP
- At the top level is the Fibre Channel Protocol (FCP)
 - Integrates with upper layer protocols, such as SCSI, FICON, and NVMe
What’s the difference between FCP and “FCP”?

- FCP is a data transfer protocol that carries other upper-level transport protocols (e.g., FICON, SCSI, NVMe)
- Historically FCP meant SCSI FCP, but other protocols exist now

NVMe “hooks” into FCP

- Seamless transport of NVMe traffic
- Allows high performance HBA’s to work with FC-NVMe
NVMe Refresher
What is Non-Volatile Memory Express (NVMe) and NVMe over Fabrics (NVMe-oF)?

- **Non-Volatile Memory Express (NVMe)**
 - Began as an industry standard solution for efficient PCIe attached non-volatile memory storage (e.g., NVMe PCIe SSDs)
 - Low latency and high IOPS direct-attached NVM storage
What is Non-Volatile Memory Express (NVMe) and NVMe over Fabrics (NVMe-oF)?

Non-Volatile Memory Express (NVMe)
- Began as an industry standard solution for efficient PCIe attached non-volatile memory storage (e.g., NVMe PCIe SSDs)
- Low latency and high IOPS direct-attached NVM storage

NVMe over Fabrics (NVMe-oF)
- Built on common NVMe architecture with additional definitions to support message-based NVMe operations
- Standardization of NVMe over a range Fabric types
 - Initial fabrics; RDMA(RoCE, iWARP, InfiniBand™) and Fibre Channel
NVMe Basics

- NVMe Drivers
- NVMe Subsystem
- NVMe Controller
- NVMe Namespaces & Media
- Queue Pairs

- In-box PCIe NVMe drivers in all major operating systems
- NVMe-oF will require specific drivers
 - FC-NVMe drivers will be provided by Fibre Channel vendors like always
NVMe Basics

- NVMe Drivers
- NVMe Subsystem
- NVMe Controller
- NVMe Namespaces & Media
- Queue Pairs

- Contains the architectural elements for NVMe targets
 - NVMe Controller
 - NVM Media
 - NVMe Namespaces
 - Interfaces
NVMe Basics

- NVMe Drivers
- NVMe Subsystem
- NVMe Controller
- NVMe Namespaces & Media
- Queue Pairs

- NVMe Command Processing
- Access to NVMe Namespaces
 - Namespace ID (NSID) associates a Controller to Namespaces(s)
NVMe Basics

- NVMe Drivers
- NVMe Subsystem
- NVMe Controller
- NVMe Namespaces & Media
- Queue Pairs

- Defines the mapping of NVM Media to a formatted LBA range
 - NVM Subsystem may have multiple Namespaces

NVMe Namespace
- # of LBAs
- LBA Format/Size
- Global Unique Identifier
- Misc. metadata settings

Media Types
- Flash
- NG_NVM
- DRAM

Media Form
- Chips
- SSD
- NVDIMM
NVMe Basics

- NVMe Drivers
- NVMe Subsystem
- NVMe Controller
- NVMe Namespaces & Media
- Queue Pairs

• I/O Submission and Completion Queue Pairs are aligned to Host CPU Cores
 • Independent per queue operations
 • Transport type-dependent interfaces facilitate the queue operations and NVMe Command Data transfers
NVMe over Fabrics (NVMe-oF)

- NVMe is a Memory-Mapped, PCIe Model
- Fabrics is a message-based transport; no shared memory
- Fibre Channel uses capsules for both Data and Commands

Figure 1: Taxonomy of Transports

```
NVMe Transports

Memory
Data & Commands/Responses use Shared Memory

Example
PCI Express

Message
Data & Commands/Responses use Capsules

Examples
Fibre Channel

Message and Memory
Commands/Responses use Capsules
Data uses fabric specific data transfer mechanism

Examples
RDMA (InfiniBand, RoCE, iWARP)
```
Extending Queue-Pairs over a Network

- Each Host/Controller Pair have an independent set of NVMe queues
- Queue Pairs scale across Fabric
 - Maintain consistency to multiple Subsystems
 - Each controller provides a separate set of queues, versus other models where single set of queues is used for multiple controllers
FC-NVMe
Take away from this section?

❖ Most important part
 • High level understanding of how FC-NVMe works
 • Understand how FCP can be used to map NVMe to Fibre Channel

❖ Next Section
 • Why use FC-NVMe?
Goals

• Comply with NVMe over Fabrics Spec
• High performance/low latency
• Use existing HBA and switch hardware
 › Don’t want to require new ASICs to be spun to support FC-NVMe
• Fit into the existing FC infrastructure as much as possible, with very little real-time software management
 › Pass NVMe SQE and CQE entries with no or little interaction from the FC layer
• Maintain Fibre Channel Service Layer
 › Name Server
 › Zoning
 › Management
Performance

The Goal of High Performance/Low Latency

- Means that FC–NVMe needs to use an existing hardware accelerated data transfer protocol
- FC does not have an RDMA protocol so FC-NVMe uses FCP as the data transfer protocol
 > Currently both SCSI and FC-SB (FICON) use FCP for data transfers
 > FCP is deployed as hardware accelerated in most (if not all) HBAs
 > Like FC, FCP is a connectionless protocol
 * Any FCP based protocols provide a way of creating a “connection”, or association between participating ports
FCP Mapping

- The NVMe Command/Response capsules, and for some commands, data transfer, are directly mapped into FCP Information Units (IUs)

- A NVMe I/O operation is directly mapped to a Fibre Channel Exchange
FC-NVMe Information Units (IUs)

1. NVMe Submission Queue Entry (SQE) is mapped to a FCP Command IU

Data

2. Data to a FCP Data IU

FCP Command IU

FCP Data IU(s)

FCP Data IU(s)

FCP Data IU(s)

3. NVMe Completion Queue Entry (CQE) to a FCP Response IU

CQE

FCP Response IU
Transactions for a particular I/O Operation are bundled into an FC Exchange

Exchange (Read I/O Operation)

- **Read Command**
- **Data**
- **Response**

Exchange (Write I/O Operation)

- **Write Command**
- **Data**
- **Response**
Zero Copy

- **Zero-copy**
 - Allows data to be sent to user application with minimal copies

- **RDMA is a semantic which encourages more efficient data handling, but you don’t need it to get efficiency**

- **FC has had zero-copy years before there was RDMA**
 - Data is DMA’d straight from HBA to buffers passed to user

- **Difference between RDMA and FC is the APIs**
 - RDMA does a lot more to enforce a zero-copy mechanism, but it is not required to use RDMA to get zero-copy
FCP Transactions

- FCP Transactions look similar to RDMA
 - For Read
 - FCP_DATA from Target
 - For Write
 - Transfer Ready and then DATA to Target
NVMe-oF Protocol Transactions

- NVMe-oF over RDMA protocol transactions
 - RDMA Write
 - RDMA Read with RDMA Read Response
FC-NVMe Discovery

- FC-NVMe Discovery uses both
 - FC Name Server to identify FC-NVMe ports
 - NVMe Discovery Service to disclose NVMe Subsystem information for those ports

- This dual approach allows each component to manage the area it knows about
 - FC Name Server knows all the ports on the fabric and the type(s) of protocols they support
 - NVMe Discovery Service knows all the particulars about NVMe Subsystems
FC-NVMe Discovery Example

- FC-NVMe Initiator connects to FC Name Server
FC-NVMe Discovery Example

- FC Name Server points to NVMe Discovery Controller(s)
FC-NVMe Discovery Example

- FC-NVMe Initiator connects to NVMe Discovery Controller(s)
FC-NVMe Discovery Example

- NVMe Discovery Controller(s) identify available NVMe Subsystems
FC-NVMe Discovery Example

- FC-NVMe Initiator connects to NVMe Subsystem(s) to begin data transfers
Zoning and Management

❖ Of course, FC-NVMe also works with

- FC Zoning

- FC Management Server and other FC Services
Why Use FC-NVMe?
Top 5 Reasons FC-NVMe Might Be The Right Choice

1) Dedicated Storage Network
Top 5 Reasons FC-NVMe Might Be The Right Choice

1) Dedicated Storage Network
2) Run NVMe and SCSI Side-by-Side
Top 5 Reasons FC-NVMe Might Be The Right Choice

- 1) Dedicated Storage Network
- 2) Run NVMe and SCSI Side-by-Side
- 3) Robust and battle-hardened discovery and name service
Top 5 Reasons FC-NVMe Might Be The Right Choice

- 1) Dedicated Storage Network
- 2) Run NVMe and SCSI Side-by-Side
- 3) Robust and battle-hardened discovery and name service
- 4) Zoning and Security
Top 5 Reasons FC-NVMe Might Be The Right Choice

- 1) Dedicated Storage Network
- 2) Run NVMe and SCSI Side-by-Side
- 3) Robust and battle-hardened discovery and name service
- 4) Zoning and Security
- 5) Integrated Qualification and Support
Summary
FC-NVMe

- Wicked Fast!
- Builds on 20 years of the most robust storage network experience
- Can be run side-by-side with existing SCSI-based Fibre Channel storage environments
- Inherits all the benefits of Discovery and Name Services from Fibre Channel
- Capitalizes on trusted, end-to-end Qualification and Interoperability matrices in the industry
More Info

❖ FCIA
 ❖ www.fibrechannel.org

❖ My contact
 ❖ craig.carlson@cavium.com
Thank you!