

FC-NVMe Tutorial

About the presenter

Presented by: Craig W. Carlson

- Senior Technologist, Cavium
- Member of SNIA Technical Council
- Chair of FC-NVMe working group within T11
- Chair T11.3 Committee on Fibre Channel Protocols
- FCIA Board Member

Thanks also to J. Metz of Cisco for contributing content

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

Agenda

- FC Refresher
- NVMe Refresher
- FC-NVMe
- Why Use FC-NVMe?
- Summary

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

What This Presentation Is

A reminder of how Fibre **Channel works**

- A reminder of how NVMe over **Fabrics work**
- A high-level overview of Fibre **Channel and NVMe, especially** how they work together

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

What This Presentation Is Not

A technical deep-dive on either Fibre Channel or **NVMe over Fabrics**

- Comprehensive (no boiling the ocean)
- A comparison between FC and other NVMe over **Fabrics methods**

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

Fibre Channel Refresher

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

What is Fibre Channel?

- A network purpose-built for storage
- A physical connection between a host and its storage
- A logical (protocol) connection between a host and its storage

Design Requirements

Fibre Channel Storage Area Network (SAN)

- Goal: Provide one-to-one connectivity
- Transport and Services are on same layer in same devices
- Well-defined end-device relationships (initiators and targets)
- Does not tolerate packet drop requires lossless transport
- Only north-south traffic, east-west traffic mostly irrelevant

Network designs optimized for Scale and Availability

- High availability of network services provided through dual fabric architecture
- Edge/Core vs. Edge/Core/Edge
- Service deployment

Client/Server Relationships are predefined

Design Elements

Terminology that covers components or parts of the system Terminology that talks about the end-to-end system

> **FC-NVMe** Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

Target

Design Elements

Host Initiator

For FC the adapter which sits in a Host is called an HBA (Host **Bus Adapter**)

Equivalent to a NIC for Ethernet

Where protocols such as NVMe or SCSI get encapsulated into a **Fibre Channel Frame**

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

Design Elements

Switch/Fabric

Fabric intelligence is most often kept in the switch

The Name Server

- Repository of information regarding the components that make up the Fibre Channel network
- Name Server is implemented in the Fabric as a distributed redundant database
- Components, like HBAs, can register their characteristics with the Name Server
- Name server knows *everything* that goes on in the Fabric

FC-NVMe Tutorial

SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

Fibre Channel typically uses an Unacknowledged Datagram **Service**

- Known as "Class 3"
- Defined as a reliable datagram (connectionless) service
 - > A class 3 frame will not be dropped unless an error occurs (i.e., bit error, or other unrecoverable error)

Frames, Sequences, and Exchanges

Fibre Channel data transfer has 3 fundamental constructs

- Frames A "packet" of data
- Sequences A set of frames for larger data transfers
- Exchanges An associated set of commands and responses that make up a single command

Frames

Each unit of transmission is called a "frame"

- A frame can be up to 2112 bytes
- Each frame consists of a FC Header, payload, and CRC

FRAME

Sequences

Multiple frames can be bundled into a "Sequence"

 A Sequence can be used to transfer a large amounts of data > possibly up to multi-megabytes (instead of 2112 bytes for a single frame)

Exchanges

An interaction between two Fibre Channel ports is termed an "Exchange"

- Many protocols (including SCSI and FC-NVMe) use an Exchange as a single command/response
- Individual frames within the same Exchange are guaranteed to be delivered in-order
- Individual exchanges may take different routes through the fabric
 - > This allows the Fabric to make efficient use of multiple paths between individual Fabric switches

EXCHANGE			
SEQUENCE	SEQUENCE	SEQUENCE	
FRAME FRAME FRAME FRAME	FRAME FRAME FRAME FRAME	FRAME FRAME FRAME FRAME	FRAME

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

*not to scale

Discovery in a FC Network

Switch/Fabric

Handled through the FC Name Server

- Many port attributes are automatically registered to the FC Name Server (e.g., Node WWN, Port WWN, Protocol types, etc.)
 - Every Fibre Channel port and node has a hard-coded address called World Wide Name (WWN)
 - WWNN uniquely identify *devices*
 - WWPN uniquely identify each *port* in a device

	Example WWN	Example WWNs from a Du
		WWNN 20:00:00:45:
WWN	20:00:00:45:68:01:EF:25	WWPN A 21:00:00:45: WWPN B 22:00:00:45:

FC-NVMe Tutorial

SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

al-Ported Device

68:01:EF:25 68:01:EF:25 68:01:EF:25

Zones/Zoning

Switch/Fabric

- Zones provide added security and allow sharing of device ports
- Zoning allows a FC Fabric to control which ports get to see each other
 - Zones can change frequently (e.g. backup)

Zoning is implemented by the switches in a Fabric

- Similar to ACLs in Ethernet switches
- Central point of authority
- Zoning information is distributed to all switches in the fabric

> Thus all switches have the same zoning configuration

Standardized

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

Fibre Channel Protocol

FC-4	Upper Layer Protocol Interface
FC-3	Common Services
FC-2	Framing and Flow Control
FC-I	Byte Encoding
FC-0	Physical Interface

Fibre Channel has layers, just like OSI and TCP

At the top level is the **Fibre Channel Protocol** (FCP)

> Integrates with upper layer protocols, such as SCSI, FICON, and NVMe

What Is FCP?

What's the difference between FCP and "FCP"?

- FCP is a data transfer protocol that carries other upper-level transport protocols (e.g., FICON, SCSI, NVMe)
- Historically FCP meant SCSI FCP, but other protocols exist now

NVMe "hooks" into FCP

- Seamless transport of NVMe traffic
- Allows high performance HBA's to work with FC-NVMe

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

NVMe Refresher

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

What is Non-Volatile Memory Express (NVMe) and NVMe over Fabrics (NVMe-oF)?

Non-Volatile Memory Express (NVMe)

- Began as an industry standard solution for efficient PCIe attached non-volatile memory storage (e.g., NVMe PCIe SSDs)
- Low latency and high IOPS directattached NVM storage

What is Non-Volatile Memory Express (NVMe) and NVMe over Fabrics (NVMe-oF)?

Non-Volatile Memory Express (NVMe)

- Began as an industry standard solution for efficient PCIe attached non-volatile memory storage (e.g., NVMe PCIe SSDs)
- Low latency and high IOPS directattached NVM storage

NVMe over Fabrics (NVMe-oF)

- Built on common NVMe architecture with additional definitions to support messagebased NVMe operations
- Standardization of NVMe over a range Fabric types
 - \rightarrow Initial fabrics; RDMA(RoCE, iWARP, InfiniBand[™]) and Fibre Channel

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

- NVMe Drivers
- NVMe Subsystem
- NVMe Controller
- NVMe Namespaces & Media
- Queue Pairs
- **NVMe** Host Driver

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

- In-box PCIe NVMe drivers in all major operating systems
- NVMe-oF will require specific drivers
 - FC-NVMe drivers will be provided by Fibre Channel vendors like always

- NVMe Drivers
- NVMe Subsystem
- NVMe Controller
- NVMe Namespaces & Media

- Contains the architectural elements for NVMe targets
 - NVMe Controller
 - NVM Media
 - NVMe Namespaces
 - Interfaces

FC-NVMe Tutorial

SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

- NVMe Drivers
- NVMe Subsystem
- NVMe Controller
- NVMe Namespaces & Media
- Queue Pairs

- NVMe Command Processing
- Access to NVMe Namespaces
 - Namespace ID (NSID) associates a Controller to Namespaces(s)

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

- NVMe Drivers
- NVMe Subsystem
- NVMe Controller
- NVMe Namespaces & Media
- Queue Pairs

- Defines the mapping of NVM Media to a formatted LBA range
 - NVM Subsystem may have multiple Namespaces

FC-NVMe Tutorial

SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

NVMe over Fabrics (NVMe-oF)

NVMe is a Memory-Mapped, PCIe Model

- Fabrics is a message-based transport; no shared memory
- Fibre Channel uses capsules for both Data and Commands

FC-NVMe Tutorial

SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

Extending Queue-Pairs over a Network

Each Host/Controller Pair have an independent set of NVMe queues **> Queue Pairs scale across Fabric >**

- Maintain consistency to multiple Subsystems
- Each controller provides a separate set of queues, versus other models where single set of queues is used for multiple controllers

FC-NVMe Tutorial

SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

FC-NVMe

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

Take away from this section?

Most important part

- High level understanding of how FC-NVMe • works
- Understand how FCP can be used to map • **NVMe to Fibre Channel**

Next Section

• Why use FC-NVMe?

FC-NVMe

Goals

- Comply with NVMe over Fabrics Spec
- High performance/low latency
- Use existing HBA and switch hardware
 - Don't want to require new ASICs to be spun to support FC-NVMe
- Fit into the existing FC infrastructure as much as possible, with very little real-time software management
 - > Pass NVMe SQE and CQE entries with no or little interaction from the FC layer
- Maintain Fibre Channel Service Layer
 - > Name Server
 - > Zoning
 - > Management

Performance

The Goal of High Performance/Low Latency

- Means that FC–NVMe needs to use an existing hardware accelerated data transfer protocol
- FC does not have an RDMA protocol so FC-NVMe uses FCP as the data transfer protocol
 - > Currently both SCSI and FC-SB (FICON) use FCP for data transfers
 - FCP is deployed as hardware accelerated in most (if not all) HBAs
 - > Like FC, FCP is a connectionless protocol
 - Any FCP based protocols provide a way of creating a "connection", or association between participating ports

FCP Mapping

The NVMe Command/Response capsules, and for some commands, data transfer, are directly mapped into FCP Information Units (IUs)

A NVMe I/O operation is directly mapped to a Fibre **Channel Exchange**

FC-NVMe Information Units (IUs)

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

I/O Operation

Transactions for a particular I/O Operation are **bundled into an FC Exchange**

Exchange (Read I/O Operation)

Exchange (Write I/O Operation)

Write Command
Data
<

FC-NVMe Tutorial

SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

Zero Copy

Zero-copy

• Allows data to be sent to user application with minimal copies

- RDMA is a semantic which encourages more efficient data handling, but you don't need it to get efficiency
- FC has had zero-copy years before there was RDMA
 - Data is DMA'd straight from HBA to buffers passed to user

Difference between RDMA and FC is the APIs

• RDMA does a lot more to enforce a zero-copy mechanism, but it is not required to use RDMA to get zero-copy

> **FC-NVMe** Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

FCP Transactions

FCP_RSP

FCP Transactions look similar to **RDMA**

- For Read > FCP_DATA from Target
- For Write
 - > Transfer Ready and then **DATA to Target**

FC-NVMe Tutorial QLogic Confidential SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

FCP_DATA

FCP_RSP

Approved

Sept. 16, 2014

NVMe-oF Protocol Transactions

NVMe-oF over **RDMA** protocol transactions

- RDMA Write
- RDMA Read with RDMA Read Response

FC-NVMe Tutorial QLogic Confidential SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

Approved

Sept. 16, 2014

FC-NVMe Discovery

FC-NVMe Discovery uses both

- FC Name Server to identify FC-NVMe ports
- NVMe Discovery Service to disclose NVMe Subsystem information for those ports

This dual approach allows each component to manage the area it knows about

- FC Name Server knows all the ports on the fabric and the type(s) of protocols they support
- NVMe Discovery Service knows all the particulars about NVMe Subsystems

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

• FC-NVMe Initiator connects to FC Name Server

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

• FC Name Server points to NVMe Discovery Controller(s)

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

• FC-NVMe Initiator connects to NVMe Discovery Controller(s)

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

NVMe Discovery Controller(s) identify available NVMe Subsystems lacksquare

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

• FC-NVMe Initiator connects to NVMe Subsystem(s) to begin data transfers

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

Zoning and Management

Of course, FC-NVMe also works with

- FC Zoning
- FC Management Server and other FC Services

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

Why Use FC-NVMe?

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

1) Dedicated Storage **Network**

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

1) Dedicated Storage Network

2) Run NVMe and **SCSI Side-by-Side**

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

1) Dedicated Storage Network

- 2) Run NVMe and SCSI Side-by-Side
- 3) Robust and battlehardened discovery and name service

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

1) Dedicated Storage **Network**

- 2) Run NVMe and SCSI Side-by-Side
- 3) Robust and battlehardened discovery and name service
- 4) Zoning and Security

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

- 1) Dedicated Storage Network
- 2) Run NVMe and SCSI Side-by-Side
- 3) Robust and battlehardened discovery and name service
- 4) Zoning and Security
- 5) Integrated **Qualification and** Support

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

Summary

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

FC-NVMe

Wicked Fast!

- Builds on 20 years of the most robust storage network experience
- Can be run side-by-side with existing **SCSI-based Fibre Channel storage** environments
- Inherits all the benefits of Discovery and Name Services from Fibre Channel
- Capitalizes on trusted, end-to-end \diamond **Qualification and Interoperability** matrices in the industry

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

More Info

→ FCIA

www.fibrechannel.org

craig.carlson@cavium.com

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved.

Thank you!

FIBRE CHANNEL INDUSTRY ASSOCIATION

FC-NVMe Tutorial SNIA Tutorial © 2017 Storage Networking Industry Association. All Rights Reserved

