Key Value SSD Explained – Concept, Device, System, and Standard

09/14/2017
Yang Seok Ki
Director of Memory Solutions Lab
Samsung Semiconductor Inc.

Disclaimer

This presentation and/or accompanying oral statements by Samsung representatives collectively, the "Presentation") is intended to provide information concerning the SSD and memory industry and Samsung Electronics Co., Ltd. and certain affiliates (collectively, "Samsung"). While Samsung strives to provide information that is accurate and up-to-date, this Presentation may nonetheless contain inaccuracies or omissions. As a consequence, Samsung does not in any way guarantee the accuracy or completeness of the information provided in this Presentation.

This Presentation may include forward-looking statements, including, but not limited to, statements about any matter that is not a historical fact; statements regarding Samsung's intentions, beliefs or current expectations concerning, among other things, market prospects, technological developments, growth, strategies, and the industry in which Samsung operates; and statements regarding products or features that are still in development. By their nature, forward-looking statements involve risks and uncertainties, because they relate to events and depend on circumstances that may or may not occur in the future. Samsung cautions you that forward looking statements are not guarantees of future performance and that the actual developments of Samsung, the market, or industry in which Samsung operates may differ materially from those made or suggested by the forward-looking statements in this Presentation. In addition, even if such forward-looking statements are shown to be accurate, those developments may not be indicative of developments in future periods.

Agenda

- Cloud: A New Era
- Scalability: A New Challenge
- Key Value SSD: A New Technology
 - Samsung Key Value SSD
- Ecosystem
- Use Case and Performance Studies
- Q&A

Agenda

- Background
- Concept
- Key Value SSD
- Ecosystem
- Use Case and Performance Studies
- Standards
- Q&A

Cloud: A New Era & Challenges

What happens in an internet minute?

BC/AD in IT

Challenges in Cloud Era

Block: Parking Lot/Structure

A driver (host) is responsible for parking (data management)

Parking Lot

Object: Valet Parking

A parking facility (storage) is responsible for parking (data management)

Object Storage Device

Key Value SSD: New Scalable Technology

Everything is object!

OSD Object Storage

ID Attributes User Data

Key Value Stores are Common in Systems at Scale

Key Value in Systems at Scale: Twitter Timeline Service

Key Idea

Key Value Store is everywhere!

Samsung KV-PM983 Prototype

NGSFF KV SSD


```
Form factor: NGSFF/U.2 | 800 E | 800 E
```


KV SSD Design Overview

Key/Value Range

- Key: 4^255B

Value: 64B~2GB (32B granularity)

The large value is stored into multiple NAND pages

Key Value SSD is a Scalable Solution with Better TCO

Ecosystem in Block and KV Device Era

KV SSD Ecosystem

KV SSD Ecosystem

Applications for KV SSD

KV SSD Ecosystem

Key Value SW Stacks

SSD with native key value interface through hardware software co-design

Key Value Software Development Stacks

kvbench: Key Value Benchmark Suite

KV Virtualization

Application

Capacity Management

Key Space Distribution

Load Balancing

Key Value Software Development Stacks

Key Value SSD Use Case Studies

Use Case Study

Use Case Study

Single Component Performance: RocksDB vs. KV Stacks

RocksDB

- Originated by Facebook and Actively used in their infrastructure
- Most popular embedded NoSQL database
- Persistent Key-Value Store
- Optimized for fast storage (e.g., SSD)
- Uses Log Structured Merge Tree architecture

KV Stacks on KV SSD

Benchmark tool directly operates on KV SSD through KV Stacks

RocksDB vs. KV Stacks Performance Measurement

Performance: Random PUT

- 8x more QPS (Query Per Second) with KV Stacks than RocksDB on block SSD
- 90+% less traffic goes from host to device with KV SSD than RocksDB on block device

^{*} Workload: 100% random put, 16 byte keys of random uniform distribution, 4KB-fixed values on single PM983 and KV-PM983 in a clean state

Use Case Study

Scale-Up Storage: RocksDB

Linear Scaling

 More devices, more throughput and capacity

IO Efficiency

Reduction of host traffics to devices

Less CPU utilization

 Small number of cores or less CPU utilization for performance

Scale-up Performance: Random Key PUT

• 15x IO performance over S/W key value store on block devices

Relative performance to the maximum aggregate RocksDB random Put QPS for 1 SSD with a default configuration for 1 PM983 SSD in a clean state. System: Ubuntu 16.04.2 LTS, , Ext4, RAID0 for block SSDs, Actual CPU utilization could be 70-90% at CPU saturation point.

Workload: 100% puts, 16 byte keys of random uniform distribution for RocksDB v. 5.0.2, 4KB-fixed values, 24 RocksDB instances with 4 client threads, 50GB/Instance or

Scale-up Performance: Sequential Key PUT

• 3.4x IO performance over S/W key value store on block devices

Relative performance to the maximum aggregate RocksDB random Put QPS for 1 SSD with a default configuration for 1 PM983 SSD in a clean state. System: Ubuntu 16.04.2 LTS, , Ext4, RAID0 for block SSDs, Actual CPU utilization could be 90% at CPU saturation point.

Workload: 100% puts, 16 byte keys of random uniform distribution for RocksDB v. 5.0.2, 4KB-fixed values, 36 RocksDB instances with 1 client thread, 34GB/Instance or

Use Case Study

Scale-Out: RocksDB & KV Stacks Configuration

OLLABORATE, INNOVATE, GROW.

SSDs 36x 1TB

NICs

2x 100GbE + 2x 50GbE

SAMSUNG

Local vs NVMeoF PUT Latency

Performance and Capacity Scale-Out: PUT Throughput

Fill Random

Fill Sequential

Client RocksDB: CentOS 7.3, Ext4, RAID0 for block SSDs,

Workload: 100% puts, 16 byte keys of random uniform distribution for RocksDB, 4KB-fixed values, 24 RocksDB instances with 8 client threads, 50GB/Instance or 1.2TB Data is used, Client KV Stacks: CentOS 7.3, KV Load Generator, 100% 4K PUTs, 16 byte keys,

KV Server: Mission Peak w/ NVMeoF KV Target

CPU Utilization for Clients

Key Value SSD Standards

Bill Martin
Principal Engineer
Memory Solutions Lab

Key Value SSD layers

Key Value SSD Standard Activities

NVMe

- Work on a technical proposal is being discussed by the NVMe working group
- The group is defining the scope of the work
- This will be a new device type

SNIA

- A proposal for a Key Value API has been submitted to the SNIA Object
 Drive Technical Working Group
- Discussion on the minimum necessary commands to meet basic Key
 Value needs is progressing

Key Value, not Object Drive

- Both standards efforts are focused on Key Value SSD not Object Drive
 - Key Value is a means to submit a Key and put or get a Value
 - Object Drive would include more extensive commands to query the Key Value database

NVMe Extension for Key Value SSD

- Defines a new device type for a Key Value device
- A controller performs either KV or traditional block storage commands

New Key Value Commands

PUT

GET

DELETE

EXISTS

Existing Command Extension

Admin command

Identify commands for KV

Other non-block specific commands

SNIA Key Value API

- The Key Value API (Application Programming Interface) has been presented to SNIA for consideration in the Object Drive Technical Working Group
- Defines a Tuple
 - Key
 - Value
- Defines KV specific constants
 - Max Key Lebngth
 - Alignment Unit
- Key type supported
 - 4 byte fixed
 - 8 byte fixed
 - Variable length character string
 - Variable length binary string
- The API defines the calls that an application may make to the Key Value device interface
 - These calls are independent of any specific implementation
 - These calls support the basic commands proposed for the NVMe standard
 - Open/Close
 - Store/Retreive
 - Exist
 - Delete
 - Containers/groups

Call for Participation

- NVMe work is proceeding in the NVMe working group
 - www.nvmexpress.org
 - Contributors and Promoters have access to working proposals
- SNIA work is proceeding in SNIA Object Drive Technical Working group
 - www.snia.org
 - Members may join the Object Drive TWG and have access to working proposals

Key Value SSD is a Scalable Solution with Better TCO

Linear performance and capacity scaling

TCO reduction

CPU or server reduction

Dense performance and capacity scaling

Lean host software stacks

Questions?

kvssd@ssi.samsung.com