A New Standard for IP Based Drive Management

Mark Carlson, Toshiba, Inc.
David Slik, NetApp, Inc.
The material contained in this tutorial is copyrighted by the SNIA unless otherwise noted.

Member companies and individual members may use this material in presentations and literature under the following conditions:
- Any slide or slides used must be reproduced in their entirety without modification
- The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these presentations.

This presentation is a project of the SNIA Education Committee.
Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be, or should be construed as legal advice or an opinion of counsel. If you need legal advice or a legal opinion please contact your attorney.

The information presented herein represents the author's personal opinion and current understanding of the relevant issues involved. The author, the presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information.

NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.
Abstract

A New Standard for IP Based Drive Management

This session will appeal to Software Developers, Development Managers, Data Center Managers, and those that are seeking a fundamental understanding of how IP-based storage drives can be integrated and managed in a datacenter environment. The session will delve into the benefits and challenges of the IP-based drive management approach, and will bring a clear understanding of how the DMTF RedFish standard is leveraged to provide a common management foundation.
What is an IP-Based Drive?

- An IP-based drive is a storage device accessed and managed using TCP/IP, typically connected via Ethernet.
 - IP-based drives can look like normal HDD/SSDs.
 - IP-Based drives can also be virtualized, and have other form factors.
Why IP-Based Drives?

- IP/Ethernet has become the primary data center connectivity fabric
 - Reduction in cost
 - Reduction in complexity
- Data centers are increasingly virtualized and dynamic
 - Light-weight containers and server-less computing
 - Mobile applications
 - Dynamic scaling
Why IP-Based Drives?

IP-based drives have the following advantages

- Storage Services provided by IP-based drives can be directly accessed anywhere IP connectivity is routed. This can be limited to a local storage network, data center wide, or even connected to the public Internet.
- Clients can access IP-based drives directly, reducing the overhead and complexity. This better fits with newer scale-out programming models.
- Multiple clients can access IP-based drives without an intervening controller.
Challenges of IP-Based Drives

Moving to IP-based drives means that every drive is a network endpoint on the data center IP network
- 50 PB of 10 TB disks (with protection) means 6,700 IP devices

IP-based drives must be directly managed, instead of being hidden behind storage controllers
- Discovery, provisioning, configuration, health monitoring, firmware, security, etc...

This tutorial discusses how IP-based drives are managed
IP-Based Drive Management

Management requirements are well-defined:
- As a device, how do I connect to a network?
- As a manager, how do I discover and provision devices?
- As a manager, how do I configure devices?
- As a manager, how do I monitor operations and faults?
- As a manager, how do I keep devices secure & up to date?

Fortunately, we don’t have to re-invent the wheel
The Distributed Management Task Force (DMTF) has created a standard for IP-based device management

Known as Redfish, it provides:
- A RESTful interface for device management
- A fully-featured and scalable device model
- Support for a variety of device topologies

SNIA has built on Redfish for IP-Based Drive Management

https://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.0.2.pdf
The IP-Based Drive Management Stack looks like this:

- Device management is built on top of the DMTF Redfish standard
- Network connectivity and discovery are defined by IETF standards
- Physical and electrical connectivity are defined by SFF and IEEE standards
IP-Based Drive Management Initialization

- On initial connection to a TCP/IP network
 - Physical connectivity is negotiated and established
 - DHCP is used to obtain an address
 - DHCP provides DNS and NTP configuration parameters
 - DNS is used to obtain a hostname, and resolve names
 - NTP is used to set the local clock + chain of trust for time

- At this point, the IP-based drive is on the network, reachable and discoverable by a device manager
Redfish Management

- Discovery via Simple Service Discovery Protocol (SSDP)
- Redfish uses HTTPS
 - Managers connect to a well-known “service entry point”
 - “/redfish/v1”
 - Standard HTTP GET/PUT/POST/PATCH/DELETE
- Data is in JSON format (with ODATA extensions)
- Returned JSON describes resource properties
- Returned JSON describes device resource map
Redfish Management

- **GET /redfish/v1**
 - JSON properties
 - "Id"
 - "Name"
 - "UUID", etc
 - JSON links
 - "Systems"
 - "Chassis"
 - "Managers", etc
 - Links have URIs that return lists of resources

```json
{
    "@odata.type":"#ServiceRoot.v1_0_2.ServiceRoot",
    "Id":"RootService",
    "Name":"Root Service",
    "RedfishVersion":"1.0.2",
    "UUID":view details "92384634-2938-2342-8820-489239905423",
    "Systems": {
        "@odata.id": "/redfish/v1/Systems"
    },
    "Chassis": {
        "@odata.id": "/redfish/v1/Chassis"
    },
    "Managers": {
        "@odata.id": "/redfish/v1/Managers"
    },
    "Tasks": {
        "@odata.id": "/redfish/v1/TaskService"
    },
    ...
}```
GET /redfish/v1/Systems/

- JSON properties
  - ODATA metadata
  - Count of systems

- JSON links
  - Array of “Members”
  - Each member has link to the corresponding system
GET /redfish/v1/Systems/43

- JSON properties
  - Based on System schema
  - Details on system device
  - Model, Serial Number, Type, etc.

- JSON links
  - Based on System schema
  - Provides further properties, plus configuration capabilities
  - Bios, Processors, Memory, EthernetInterfaces, SimpleStorage, LogServices, etc.
Redfish Management

- By drilling down through these discoverable JSON documents, a manager can discover and monitor characteristics of a device.
- Redfish also provides mechanisms by which configuration parameters can be modified via PUT, POST or PATCH.
- Redfish also defines a standard for push-based notifications, and for management security functions.
The SNIA Object Drive Technical Working Group (TWG) has created an IP-based drive management specification based on Redfish.

This is a SNIA Technical Position (standard):

http://www.snia.org/sites/default/files/technical_work/IPdrive/IPBasedDriveMgmtSpecV1.0.pdf
The following Redfish Services are mandatory
- Account Service
- Session Service
- Chassis Collection
- Manager Collection
- Computer System Collection

The following Redfish Services are recommended
- Update Service
For IP-based drives, a new “ChassisType” property of “IPBasedDrive” is defined.

The Chassis resources should support the following properties:

- “Status”, “Manufacturer”, “Model”, “SKU”, “PartNumber”, “SerialNumber”, “AssetTag”, “IndicatorLED”.

As IP-based drives have an integrated computer, they shall implement a “Computer System” collection

Each Computer System shall contain an Ethernet Interface Collection, used to manage the Ethernet port(s)

The Computer System resources should support the following properties:

- “Status”, “Manufacturer”, “Model”, “SKU”, “PartNumber”, “SerialNumber”, “AssetTag”, “IndicatorLED”.
As IP-based drives have a storage device, they shall implement a “Drive” entity.

The Drive resources should support the following properties:


Redfish for IP-Based Drives
Redfish for IP-Based Drives

Putting this together:

- **Root resource**
  - Links to all content
  - `/redfish/v1`

- **Collection of Systems**
  - Logical view of the system
  - `/redfish/v1/Systems`

- **Collection of Chassis**
  - Physical view of the system
  - `/redfish/v1/Chassis`

- **/redfish/v1/Systems/<id>**
  - Server information
    - Model#, Serial#, Boot order, NIC MAC, status etc

- **/redfish/v1/Chassis/<id>**
  - Chassis information
    - Chassis global physical asset information

- **Sessions**
- **Accounts**
- **Schemas**
- **Events**

- **Processors**
- **Disks**
- **NICs**

- **Power**
- **Thermal**
Call to action

- Read the IP Based Drive Management specification
  - Drill down and understand Redfish
- Investigate using some open source for risk reduction activities
  - [https://www.dmtf.org/standards/opensource](https://www.dmtf.org/standards/opensource)
  - [https://www.snia.org/opensource](https://www.snia.org/opensource)
More Resources

SNIA IP-Based Drives:
- [https://www.snia.org/object-drives](https://www.snia.org/object-drives) - Standard home page
- [https://www.snia.org/education/tutorials/fms2015](https://www.snia.org/education/tutorials/fms2015) - Tutorial
- [https://www.brighttalk.com/webcast/663/249213](https://www.brighttalk.com/webcast/663/249213) - Webcast

DMTF Redfish:
- [http://redfish.dmtf.org](http://redfish.dmtf.org) - Standard home page
- [http://redfish.dmtf.org/redfish/v1](http://redfish.dmtf.org/redfish/v1) - Mockup
- [http://redfish.dmtf.org/education](http://redfish.dmtf.org/education) - Whitepapers & presentations
The SNIA Education Committee thanks the Object Drive TWG and the following Individuals for their contributions to this Tutorial.

Authorship History

July 2017, Mark Carlson, David Slik

Updates: Alex McDonald

Additional Contributors

Please send any questions or comments regarding this SNIA Tutorial to tracktutorials@snia.org