Workload Analysis of Key-Value Stores on Non-Volatile Media

Vishal Verma (Performance Engineer, Intel)
Tushar Gohad (Cloud Software Architect, Intel)
Outline

- KV Stores – What and Why
- Data Structures for KV Stores
- Design Choices and Trade-offs
- Performance on Non-Volatile Media
- Key Takeaways
Outline

- KV Stores – What and Why
- Data Structures for KV Stores
- Design Choices and Trade-offs
- Performance on Non-Volatile Media
- Key Takeaways
What are KV Stores

- Type of NoSQL database that uses simple key/value pair mechanism to store data
- Alternative to limitations of traditional relational databases (DB):
 - Data structured and schema pre-defined
 - Mismatch with today’s workloads.
 - Data growth in large and unstructured
 - Lots of random writes and reads.
- NoSQL brings flexibility as application has complete control over what is stored inside the value
What are KV Stores

- Key in a key-value pair must (or at least, *should*) be unique. Values identified via a key, and stored values can be numbers, strings, images, videos etc
- API operations: `get(key)` for reading data, `put(key, value)` for writing data and `delete(key)` for deleting keys.
- **Phone Directory** example:

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td>(123) 456-7890</td>
</tr>
<tr>
<td>Kyle</td>
<td>(245) 675-8888</td>
</tr>
<tr>
<td>Richard</td>
<td>(787) 122-2212</td>
</tr>
</tbody>
</table>
KV Stores: Benefits

- **High performance**: Enable fast location of object rather than searching through columns or tables to find an object in traditional relational DB.

- **Highly scalable**: Can scale over several machines or devices by several orders of magnitude, without the need for significant redesign.

- **Flexible**: No enforcement of any structure to data.

- **Low TCO**: Simplify operations of adding or removing capacity as needed. Any hardware or network failure do not create downtime.
Outline

- KV Stores – What and Why
- Design Choices and Trade-offs
- Performance on Non-Volatile Media
- Key Takeaways
Design Choice: B-Tree

- Internal nodes (green) – pivot keys
- Leaf nodes (blue) – data records (KV)
- Query time proportional to height
 - Logarithmic time
- Insertion / Deletion
 - Many random I/Os to disk
 - May incur rebalance – read and write amplification
 - Full leaf nodes may be split – space fragmentation
B-Tree: Trade-offs

- Example DB engines: BerkeleyDB, MySQL InnoDB, MongoDB, WiredTiger
- Good design choice for read-intensive workloads
- Trades read performance for increased Read / Write / Space Amplification
 - Nodes of B-Trees are on-disk blocks – aligned IO = space-amp
 - Compression not effective – 16KB block size, 10KB data compressed to 5KB will still occupy 16KB
 - Byte-size updates also end up in page size read / writes
Performance Test Configuration

<table>
<thead>
<tr>
<th>System Config</th>
<th>Non-Volatile Storage</th>
<th>OS Config</th>
<th>Key-Value Stores</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU: Intel(R) Xeon(R) CPU E5-2618L v4, 2.20GHz, HT disabled, 20 cores</td>
<td>Intel ® P4500 SSD (4TB)</td>
<td>Distro: Ubuntu 16.04.1</td>
<td>WiredTiger 3.0.0</td>
</tr>
<tr>
<td>Memory: 64GB</td>
<td></td>
<td>Kernel: 4.12.4</td>
<td>RocksDB 5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arch: x86_64</td>
<td>TokuDB 4.6.119</td>
</tr>
</tbody>
</table>

Dataset:
- 500GB - 1TB (500 million - 1 billion records)
- Dataset size higher (> 3:1 DRAM size)
- Compression Off

- Key_size: 16 Bytes
- Value_size: 1000 Bytes
- Cache size: 32GB

db_bench:
- Source: https://github.com/wiredtiger/leveldb.git
- Test Duration: 30 minutes

Workloads:
- ReadWrite (16 Readers, 1 Writer)

Linux Kernel 4.12.0 Tuning parameters
- Drop page cache after every test run
- XFS filesystem, agcount=32, mount with discard
Readwrite: WiredTiger B-Tree

500 million rows

WiredTiger BTree Writes
(30 min run)

WiredTiger BTree Reads
(30 min run)

Read plot represents single Reader.

Ops Completed: 1 thread Write 2.15 million, 16 thread Read 27.36 million
Readwrite: WiredTiger B-Tree

500 million rows

Test: Single Writer, 16 Readers. Read plot represents single Reader latency.
Design Choice: LSM Tree

- Log-Structured Merge-tree
- Two or more Tree-like components
 - In-memory Tree (RocksDB: memtable)
 - One or more Trees on persistent store (RocksDB: SST files)
- Transforms random writes into few sequential writes
 - Write-Ahead Log (WAL) – append-only journal
 - In-memory store – inexpensive writes to memory as the first level write. Flushed sequentially to first level in persistent store.
- Compaction – Merge sort like background operation
 - Few sequential writes (better than random IOs in B-Tree case)
 - Trims duplicate data – minimal space amplification
- Example DB engines: RocksDB, WiredTiger, Cassandra, CouchBase, LevelDB
LSM Trees – Operation

- N-level Merge Tree
- Transform random writes into sequential writes using WAL and In-memory tables
- Optimized for insertions by buffering
- Key value items in the store are sorted to support faster lookups
Design Choice: LSM Tree

- Writes – Append-only constructs
 - No read-modify-write, no double write
 - Reduce fragmentation but sort/merges to multiple levels cause Write Amplification
- Reads – Expensive point, order by and range queries
 - Might call for compaction
 - Might need to scan all levels
 - Read Amplification
 - Can be optimized with Bloom Filters (RocksDB)
- Deletes – Defers deletes via tombstones
 - Tombstones scanned during queries
 - Tombstones don’t disappear until compaction
LSM Trees: Trade-offs

- **Read / Write / Space Amplification Summary**
 - Read amp: 1 up to number of levels
 - Write amp: 1 + 1 + fan-out

- **Most useful in applications**
 - Tiered storage with varying price / performance points
 - RAM, Persistent Memory, NVMe SSDs etc
 - Large dataset where inserts / deletes are more common than reads / searches

- **Better suited for Write-intensive workloads**
 - Better compression: page/block alignment overhead small compared to size of persistent trees (SST files in RocksDB)
 - Leveled LSMs have lower write and space amplification compared to B-Tress
LSM Tree Example: RocksDB

1 billion rows

RocksDB LSM Write Throughput (30 min run)

RocksDB LSM Read Throughput (30 min run)

Read plot represents single Reader.

Ops Completed: 1 thread Write 5.2 million, 16 thread Read 6.3 million
LSM Tree Example: RocksDB

1 billion rows

RocksDB LSM Write Latency (30 min run)

RocksDB LSM Read Latency (30 min run)

Test: Single Writer, 16 Readers. Read plot represents single Reader Latency.
Design Choice: Fractal Trees

- Merges features from B-trees with LSM trees
- A Fractal Tree index has buffers at each node, which allow insertions, deletions and other changes to be stored in intermediate locations
- Fast writes slower reads and updates
- Better than LSM for range reads on cold cache, but the same on warm cache
- Commercialized in DBs by Percona (Tokutek)
Maintains a B tree in which each internal node contains a buffer, shaded RED.

To insert a data record, simply insert it into the buffer at the root of the tree vs. traversing entire tree (B-Tree).

When root buffer full, move inserted record down one level until they reach leaves and get stored in leaf node like B-Tree.

Several leaf nodes are grouped to create sequential IO (~1-4MB).

Insert(31, ...) moves 41, 43 into the next level.
Fractal Trees: Trade-offs

- Read / Write / Space Amplification Summary
 - Write Amplification similar to leveled LSM (RocksDB)
 - Better than B-Tree and LSM (in theory)
- Most useful in applications
 - Tiered storage with varying price / performance points
 - RAM, Persistent Memory, NVMe SSDs etc
 - Large dataset where inserts / deletes are more common than reads / searches
- Better suited for Write-intensive workloads
 - Lower write and space amplification compared to B-Tress
Fractal Tree Example: TokuDB
1 billion rows

Test: Single Writer, 16 Readers. Read plot represents single Reader.
Fractal Tree Example: TokuDB

1 billion rows

Test: Single Writer, 16 Readers. Read plot represents single Reader.
Outline

- KV Stores – What and Why
- Design Choices and Trade-offs
- Performance Comparisons
- Key Takeaways
Performance Test Configuration

<table>
<thead>
<tr>
<th>System Config</th>
<th>Non-Volatile Storage</th>
<th>OS Config</th>
<th>Key-Value Stores</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU: Intel(R) Xeon(R) CPU E5-2618L v4, 2.20GHz, HT disabled, 20 cores</td>
<td>Intel ® P4500 SSD (4TB)</td>
<td>Distro: Ubuntu 16.04.1</td>
<td>WiredTiger 3.0.0</td>
</tr>
<tr>
<td>Memory: 64GB</td>
<td></td>
<td>Kernel: 4.12.4</td>
<td>RocksDB 5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arch: x86_64</td>
<td>TokuDB 4.6.119</td>
</tr>
</tbody>
</table>

Dataset:
- Dataset size higher (> 3:1 DRAM size)
- Compression Off

Key_size: 16 Bytes
Value_size: 1000 Bytes
Cache size: 32GB

db_bench:
- Source: https://github.com/wiredtiger/leveldb.git
- Test Duration: 30 minutes

Workloads:
- ReadWrite (16 Readers, 1 Writer)
- Overwrite (4 Writers)

Linux Kernel 4.12.0 Tuning parameters
- Drop page cache after every test run
- XFS filesystem, agcount=32, mount with discard
KV Workload#0: Fill (Insert)
1 Writer, Space and Write Amplification

<table>
<thead>
<tr>
<th></th>
<th>App Writes (GB)</th>
<th>Disk Usage (GB)</th>
<th>Space Amplification</th>
<th>Data Bytes Written (per iostat, GB)</th>
<th>Write Amplification (per iostat)</th>
<th>SSD Writes* includes NAND GC (GB)</th>
<th>Total Write Amplification (including NAND GC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WiredTiger</td>
<td>~190</td>
<td>223</td>
<td>1.17</td>
<td>223</td>
<td>1.07</td>
<td>239</td>
<td>1.3</td>
</tr>
<tr>
<td>(B-Tree)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RocksDB</td>
<td>~190</td>
<td>197</td>
<td>1.04</td>
<td>395</td>
<td>1.11</td>
<td>438</td>
<td>2.3</td>
</tr>
<tr>
<td>(Leveled LSM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TokuDB</td>
<td>~190</td>
<td>196</td>
<td>1.03</td>
<td>605</td>
<td>1.14</td>
<td>688</td>
<td>3.6</td>
</tr>
<tr>
<td>(Fractal-Tree)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Space Amplification is the amount of disk space consumed relative to the total size of KV write operation.

Write Amplification (per iostat) is the amount of data written relative to the total size of KV operation.

Write Amplification (including NAND GC) is the work done by the storage media relative to the total size of KV operation.

* - SSD Device Writes obtained with nvme-cli from SMART stats for Intel® P4500
KV Workload#1: Readwhilewriting

1 Writer, 16 Readers

ReadWrite: KV Store Write Throughput

- TokuDB: 900 OPs/sec
- RocksDB: 4580 OPs/sec
- WiredTiger (B-Tree): 652 OPs/sec

ReadWrite: KV Store Read Throughput

- TokuDB: 1966 OPs/sec
- RocksDB: 2444 OPs/sec
- WiredTiger (B-Tree): 6894 OPs/sec

99.99pct Write Latency (s)

- WiredTiger (B-Tree): 10
- RocksDB: 30
- TokuDB: 35

2017 Storage Developer Conference
KV Workload#2: Overwrite

4 Writers

OverWrite: KV Store Write Throughput

<table>
<thead>
<tr>
<th>KV Store</th>
<th>Operations/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>WiredTiger (B-Tree)</td>
<td>4204</td>
</tr>
<tr>
<td>RocksDB</td>
<td>20793</td>
</tr>
<tr>
<td>TokuDB</td>
<td>21602</td>
</tr>
</tbody>
</table>

99.99pct Write Latency (s)

- TokuDB: 120
- RocksDB: 20
- WiredTiger (B-Tree): 5000

2017 Storage Developer Conference
Outline

- KV Stores – What and Why
- Design Choices and Trade-offs
- Performance on Non-Volatile Media
- Key Takeaways
Key Takeaways

- Key-Value stores important for unstructured data
- Choice of an SSD-backed Key Value store is workload-dependent
 - Performance vs Space / Write Amplification trade-off key decision factor
- Traditional B-Tree implementations
 - Great for read-intensive workloads
 - Better write amplification compared to alternatives
 - Poor space amplification
- LSM and Fractal-Trees
 - Well-suited for write-intensive workloads
 - Better space amplification compared to B-Tree
Thank you!

Comments / Questions?

Vishal Verma (vishal.verma@intel.com)