

Fine-Grained Latency Measurement

David J. Cuddihy ATTO Technology, Inc.

Performance Measuring Tools (Block Storage)

Topology AI Managers	Dak Targets Network Targets Access Specifica Results S	Results Since	vna Fiesuita Dapitay Test Setup ce Update Frequency (aeconds)		
Worker 1	from the Topology window to the progress bar of your choice.	C Last Update	1 2 3 4 5 10 15	30 45 60 ×	
Worker 1 Worker 1 Worker 1	Display Total I/Os per Second	Al Managers	1952.74	10000	
Worker 1 Worker 1	Total MBs per Second	Al Managers	20.01	100	
Worker 1 Worker 1	Average I/O Response Time (ms)	Al Managers	6.3980	10	
	Maximum I/O Response Time (ms)	Al Managers	1720.4443	10000	
	1. CPU Ublication (total)	Al Managers	0.66 %	10 %	
	Tabel Deve Caust	Al Managers	0	10	

SD @

Starting 4 processes Jobs: 4 (r+4): [www] [100.0% done] [0k/174.3M /s] [0 /340% tops] [eta 00m:80s] writes: (u=5074.9M5, bu=732168/s, [u=5304 write: (u=5074.9M5, bu=732168/s, [u=5304627, runt= 30801usec slat (u=571 innet, u=ru=627, runt=30, starw.42, 2
clat (usec): min=2 , max=8618 , avg=221.28, stdev=88.00
lat (usec): min=104 , max=8737 , avg=360.29, stdev=88.22
clat percentiles (usec):
1.00th=[113], 5.00th=[133], 10.00th=[143], 20.00th=[173],
30.08th=[179], 40.08th=[185], 50.00th=[191], 60.00th=[199],
70.00th=[217], 80.00th=[294], 90.00th=[350], 95.00th=[414],
99.00th=[462], 99.50th=[470], 99.90th=[510], 99.95th=[580],
99.99th=[1448]
bw (KB/s) : min= 1, max=60400, per=24.55%, avg=42527.75, stdev=8020.48
lat (usec) : 4=0.01%, 10=0.01%, 20=0.01%, 50=0.01%, 100=0.04%
lat (usec) : 250=76.16%, 500=23.69%, 750=0.07%, 1000=0.01%
lat (msec) : 2=0.03%, 4=0.01%, 10=0.01%
cpu : usr=7.46%, sys=69.82%, ctx=10920620, majf=0, minf=117
IO depths : 1=0.8%, 2=0.8%, 4=0.8%, 8=0.8%, 16=0.1%, 32=117.1%, >=64=0.8%
submit : 0=0.0%, 4=0.0%, 8=0.0%, 16=100.0%, 32=0.0%, 64=0.0%, >=64=0.0%
complete : U=0.0%, 4=0.0%, 8=0.0%, 16=100.0%, 32=0.0%, 64=0.0%, >=64=0.0%
issued : total=r=0/w=10393184/d=0, short=r=0/w=0/d=0

Run status group 0 (all jobs):

WRITE: io=5074.9MB, aggrb=173216KB/s, minb=173216KB/s, maxb=173216KB/s, mint=30001msec, maxt=30001msec

Disk stats (read/write):

fiob: ios=12/12139689, merge=0/0, ticks=0/1671657, in_queue=1667116, util=99.78%

How Benchmarks Lie

- Report minimum/maximum/average
 IOPS or MB/s
- Bimodal systems
 - Fast at times, slow at others
 - Min/Max/Average is a poor representation
- Multiple initiator aggregates
 - Averaging multi-server systems skews numbers further

Benchmarks In a RAID System

Cache decisions create noise

- Direct read vs read from cache (bimodal)
- Early status vs wait-for-completion on writes
- Rebuilds create noise
 - Smaller system I/Os can be stuck behind large reads/writes used for rebuilds (drive prioritization)
- Noisy systems are harder to analyze
 - Averages hide smaller signals in the noise

Measure Latency Alongside IOPS

- Software tools provide latency measurement
 Linux FIO include latency bar graph
 xPerf disk latency output
 Latency measurements give visibility
 - Spot bimodal systems
 - Weed out hiccups

IOPS vs. Latency

6 HDD Random 4K Read **15K IOPS**

2017 Storage Developer Conference. © ATTO Technology, Inc. All Rights Reserved.

A Better Visualization: Latency Heat Map

- **Better than scatter plot due to time compression**
 - Colors show recurrence within a sample period
- **3**-dimensional:
 - 🗆 X & Y
 - Color intensity is the third dimension
- Credits to Bryan Cantrill & Brendan Gregg
 - Sun Microsystems ZFS storage appliance, 2007
 - CACM July 2010 : 'Visualizing System Latency''
 - www.brendangregg.com

Heat Map Example

2017 Storage Developer Conference. © ATTO Technology, Inc. All Rights Reserved.

Band at 4.5 to 5 ms

What's with Drive 5?

Storage Controller Overview

- Some storage controller basics
- Latency measurement system

Anatomy of Storage Algorithm (Data In)

SD (7

- Command Phase
 - Command validation
- Allocation Phase
 - Allocate command structures
 - Allocate buffer(s) for data
 - Create scatter/gather
- Data Phase
 - Data transfer
- Status Phase
- Completion/Cleanup
 - Return buffers/structures

Anatomy of a Storage Controller

- System on chip
- Protocol engine(s)
- Data plane engine
- Control plane engine

Data Plane Engine

- Hardware engines
 - Handle each stage of transfer
- NonData commands handed to control plane
- Error states handed to control plane

Accelerating Storage System

- Use fine grained latency measurement
- Transfer split into subcomponents
- One component can throw latency out of whack
- Measure to optimize system performance
 - Iterative
 - Identify bottleneck; mitigate;
 - Iather-rinse-repeat

What Does This Have To Do With Latency?

- Control plane processor gathers statistics
- Data plane processor is opaque
 - We need to measure in order to optimize

Data Plane Measurement - Timestamps

- Two timestamps in each command context
- Configure engines for latency window
 - Specify start and end of latency measurement
- Start engine logs timestamp
- End engine logs timestamp
- Cleanup engine calc's delta and bins result

Command Timestamps

- Start and end timestamp added to control block
- Engines configured to be at start, middle, or end
- Timestamps are binned at command completion
 - 8 Programmable bins1 us/20 bit resolution

Command Timestamps: Bin Component

How Did We Get Here?

Latency measurements
Heat maps
Data plane measurements

Example: Bimodal System Max latency 112ms, Mean latency 10ms RAID 5 **4K Writes** < 17 sec mean latency QD 64 max latency < 2966 msec < 524 msec < 93 msec latency (usec) < 16 msec < 2896 usec < 512 usec < 90 usec < 16 usec 1Ós 5Ós 20s 30s 40s 60s 5 0s 2 cumulative latency histo (log10) SD @ 21 2017 Storage Developer Conference. © ATTO Technology, Inc. All Rights Reserved.

Heat Map : IOPS Shelf (Single Drive Fail)

SD[©]

105 Drive IOMETER Workload

SD @

JBOD I 20 Drives 4K Sequential Reads LUN 78: I MB Rnd Read QD 32 2 Workers

Banding in IOPS Heat Map

SD@

2017 Storage Developer Conference. © ATTO Technology, Inc. All Rights Reserved.

Lun with random reads

2017 Storage Developer Conference. © ATTO Technology, Inc. All Rights Reserved.

Tick in IOPS – single lun measurement

SD

Measure Command Ingress ONLY

Use 20 Workers Instead of 2

JBOD I 20 Drives 4K Sequential Reads LUN 78: I MB Rnd Read QD 32 20 Workers

SD⁽¹⁾ 201

2017 Storage Developer Conference. © ATTO Technology, Inc. All Rights Reserved.

What Does LUN 1 Look Like?

2017 Storage Developer Conference. © ATTO Technology, Inc. All Rights Reserved.

Higher Overall Latency? Better IOPS?

Questions

Acknowledgements

- Special thanks to Scott Snowden and Barry Debbins (ATTO Technology, Inc.)
- Images on slides 15,16 & 33 downloaded from OpenClipArt.org

