SDC STORAGE DEVELOPER CONFERENCE

SNIA SANTA CLARA, 2017

Getting it Right II: Testing Storage Arrays The Way They'll be Used **An Example Implementation Peter Murray Virtual Instruments**

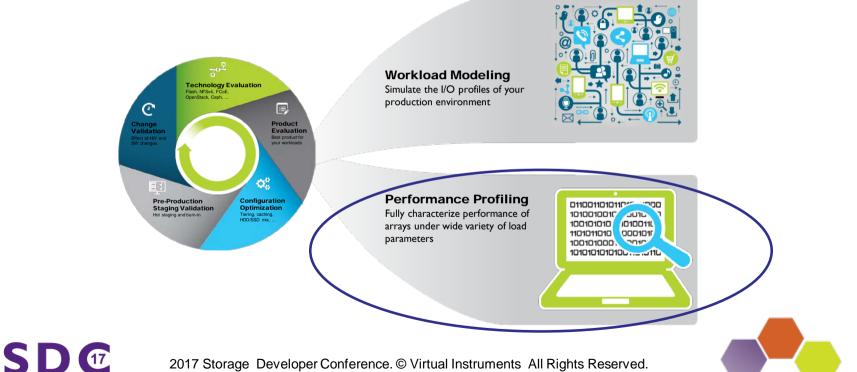
Typical Performance Testing Questions

- □ Which is the best technology for my needs?
- Which is the best vendor / product for my needs?
- What is the optimal configuration for my array?
- Does performance degrade with enterprise features:
 - Deduplication
 - Compression
 - Snapshots, Clones, Replication
- What are the performance limits of a potential configuration?
- How does an array behave when it reaches its performance limit?
- Does performance degrade over time?
- □ How does a new firmware version affect array performance?

Does it cause regression in failover, replication, snapshots?
 S D 1
 2017 Storage Developer Conference. © Virtual Instruments All Rights Reserved.

Traditional Storage Testing Approaches

- Limits finding
- Functional testing
- Error Injection
- Soak testing



3


Storage Performance Validation 2 core methodologies

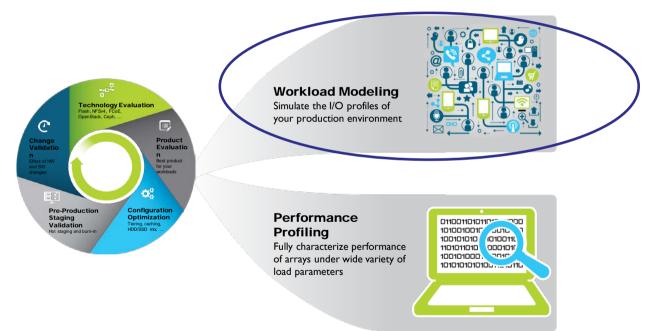
2017 Storage Developer Conference. © Virtual Instruments All Rights Reserved.

Performance Profiling

- Performance Profiling
- Characterization under a wide range of workload conditions
- Understand sweet spots and weaknesses of an array
- Sometimes referred to as "4 corners" or "limits" testing, but you can do much more than that
- Vendors need these tests to validate portions of a storage array
- IT customers do not generally benefit from this testing
 - Applications don't act like performance profiles
 - Some exceptions; e.g. queue depth or outstanding commands

Performance Profiling

Access Pattern - Read %	0, 20, 40, 60, 80, 100	×
I/O - Constant Request Siz	e 4KB, 8KB, 16KB, 32KB, 64KB	×
Port - Tx Queue Depth (FC	only) 1, 2, 4, 8, 16, 32, 64, 128	×
Load - Throughput Value	1MB, 5MB, 10MB	ж
Data Reduction - Uncompr to compressed ratio	essed 2.0, 1.5	×


Performance Profiling (continued)

	Fibre c	hannel	perfo	rmanc	e				F	inished
1	:00:05:15									00:00
L	ast Log Re	cord: 2015-0	1-26 11:38:35	5 AM Suc	cess Tes	t Suite finished	t			Logs
erat	tion Resu Status	Lts Lts Expo	Access Pattern - Read %	I/O - Constant Request Size	Port - Tx Queue Depth (FC only)	Load - Throughput Value	Data Reduction - Uncompressed to compressed ratio	SCSI Throughput (average)	SCSI IOs Succeeded/sec (average) ↓	SCSI Average Response/Latency Time (average)
48	Finished	01:01	0	4KB	128	10MB	1.5	8.3 MB/sec	2115.387	6 ms
47	Finished	01:00	0	4KB	128	10MB	2	8.0 MB/sec	2044.602	.7 ms
42	Finished	01:00	0	4KB	64	10MB	1.5	7.5 MB/sec	1921.051	.5 ms
41	Finished	01:00	0	4KB	64	10MB	2	7.2 MB/sec	1837.487	.9 ms
36	Finished	01:00	0	4KB	32	10MB	1.5	6.5 MB/sec	1663.073	.3 ms
88	Finished	01:00	20	4KB	128	10MB	1.5	6.5 MB/sec	1657.239	. <mark>5 ms</mark>
35	Finished	01:00	0	4KB	32	10MB	2	6.3 MB/sec	1612.252	.5 ms
82	Finished	01:00	20	4KB	64	10MB	1.5	6.2 MB/sec	1586.806	.8 ms
81	Finished	01:00	20	4KB	64	10MB	2	6.1 MB/sec	1554.01	.1 ms
87	Finished	01:01	20	4KB	128	10MB	2	6.1 MB/sec	1545,593	.7 ms

2017 Storage Developer Conference. © Virtual Instruments All Rights Reserved.

Workload Modeling

SD@

2017 Storage Developer Conference. © Virtual Instruments All Rights Reserved.

8

Workload Modeling

Virtual Instruments combines a storage workload modeling application – Load DynamiX Enterprise, with purpose-built load generation appliances and data capture probes, to help storage architects and engineers to accurately characterize storage performance.

Where Does Workload Modeling Come From?

- Customers ask for workload models
 - Vendors want "the" application workload
 - Oracle, Exchange, etc.
 - IT customers want "their" workload models
- Vendors ask for help to:
 - Find realistic array and application scaling limits
 - Test customer examples/issues
- □ IT customers ask to help make better decisions about:
 - Upgrading storage hardware or software
 - Changing storage network configuration
 - Consolidating workloads

Workload Modeling

- Stresses an array using a realistic simulation of specific production workload(s)
 - □ For vendors, using customer examples or "dog food"
 - □ For IT customers, from the current environment
- □ Realism is paramount running better I/O profiles
- Method produces better realism without packet trace limitations
 - Workload profile is smaller
 - Longer duration
 - □ Fewer security concerns

Workload Modeling Process

2 3 Acquire & Create Run tests Analyze analyze model results Acquire & **Create storage** Connect Find analyze workload storage performance historical emulations systems to limits. production data from production Load DynamiX Compare for workload I/O data workload latency, profiling generation throughput, appliances and and IOPS run tests

Acquiring and Analyzing Data: Sources

- Wire data from taps
- Storage array performance tools
- Traces
- Guesstimates

Acquiring and Analyzing Data: Taps

- Data directly related to an application
- Sometimes, very detailed
- Few security concerns
- Disadvantages
- May not be fine-grained enough

Acquiring and Analyzing Data: Perf Tools

- Often, data directly from one application
- May be highly detailed
- Few security concerns
- Disadvantages
- Resolution highly varies according to vendor
- Not always public (may be difficult to obtain)
- Perf tool may summarize data across applications

Acquiring and Analyzing Data: Traces

- Highly specific and accurate
- Disadvantages
- Short duration
- Difficult to pinpoint exact conditions
- High security concerns

Acquiring and Analyzing Data: Guesstimates

- Simple to set up
- Disadvantages
- Not reflective of any specific application

Acquiring and Analyzing Data

			Write																
	Host	Read Response	Response		%		% Read		Avg I/O	Capacity									
Name	IOs/sec	Time (ms)	Time (ms)	% Hit	Writes	% Reads	Miss	WP Count	Size	(GB)	% Used	%I/O Avg		Member	%RR	%SR	%RW %	SW	
arc	2.8	1.7	7.7	100	98.4	1.6	2.9	0	347	256	98	0.10	2745.9	4			93		7
dbfl	522.1	2.7	0.8	51.5	0.4	99.6	48.7	10.9	19	256	95	19.01	2745.9	4	95	4			
dbf2	448.5	2.9	0.8	51.3	0.1	99.9	48.7	2.4	16	256	100	16.33	2745.9	4	94	6			
dbf3	316.6	1.8	1.2	82.5	5.2	94.8	18.4	96.8	19	256	100	11.53	2745.9	4	84	11	5		
dbf4	297	1.8	0.9	42.9	0.9	99.1	57.6	8	29	100	100	10.82	2745.9	2	99		I		
dbf5	235.6	1.4	1.2	87.2	4.8	95.2	13.4	65.8	17	256	100	8.58	2745.9	4	84	11	5		
dbf6	220.2	1.7	1	83.9	5.6	94.4	17	58.9	20	256	100	8.02	2745.9	4	84	11	5		
dbf7	201.4	3.3	1.4	82.7	١.5	98.5	17.6	17.2	237	256	95	7.33	2745.9	4	94	4	1		
dbf8	165.7	3.1	1.1	66.2	5.1	94.9	35.6	35.1	19	200	83	6.03	2745.9	4	91	3	5		
dbf9	91.9	1.3	2.2	88.3	6.2	93.8	12.4	24.7	17	100	100	3.35	2745.9	2	82	11	6		
dbf10	90.3	3.3	2.3	71.6	27.7	72.3	39.1	145.7	48	200	99	3.29	2745.9	4	73	1	26		
dbfl l	7.6	5.4	1.3	57.9	17.8	82.2	51.3	6.3	105	256	100	0.28	2745.9	4	81	1	18		I
oraex	1.5	3.6	0.7	62.6	17.7	82.3	42.2	I.4	2	33	86	0.05	2745.9	I	82		17		2
quest	6.3	0.8	1.4	98.5	88.5	11.5	7.2	13.5	13	10	40	0.23	2745.9	I	9	2	86		4
redo l	70.2	6	0.7	87.9	96.9	3.1	20.3	63.6	28	32	93	2.56	2745.9	4	3		88		9
redo2	68.I	0.5	0.8	88	99.6	0.4	0.9	68.4	14	32	93	2.48	2745.9	4			90		9

Clustering

- Typical application load varies widely across LUNs
- A few LUNs handle much of the traffic
- Many operate at much lower rates
- Using uniform load across multiple LUNs is unrealistic
- Overtaxes array, understates array performance
- Load should be divided into groups (clusters) to reflect the relative traffic levels and content

Why Cluster? An example

- □ Early on, we tested by treating all LUNS the same
- One workload repeated for hundreds of LUNs
- Used customer's busiest time to record the workload
- With this configuration, the test experienced 130ms latency
- When test re-ran using clustering, latency dropped dramatically to < 4ms, with high throughput and IOPs</p>

Implementing Clustering

Choose a limited number of example workloads as input

- Busiest and least busy often use 8 workloads as models
- Distribute example workloads proportioinally among total number of LUNs to be tested
- Produce a model from this cluster

Analyzing Acquired Data

Name	Host IOs/sec	% Writes	%Reads	Avg I/O Size	Capacity (GB)	%RR	%SR	%RW 9	%SW
dbf1	522.1	. 0.4	99.6	19	256	95	4	0	0
dbf2	448.5	6 0.1	99.9	16	256	94	6	0	0
dbf3	316.6	5.2	94.8	19	256	84	11	5	0
dbf4	297	0.9	99.1	29	100	99	0	1	0
dbf5	235.6	6 4.8	95.2	17	256	84	11	5	0
dbf6	220.2	2 5.6	94.4	20	256	84	11	5	0
dbf7	165.7	5.1	94.9	19	200	91	3	5	0
dbf8	91.9	6.2	93.8	17	100	82	11	6	0
dbf9	90.3	3 27.7	72.3	48	200	73	1	26	0
dbf10	7.6	5 17.8	82.2	105	256	81	1	18	1
dbf11	201.4	1.5	98.5	237	256	94	4	1	0
redo1	70.2	96.9	3.1	28	32	3	0	88	9
redo2	68.1	. 99.6	0.4	14	32	0	0	90	9
quest	6.3	8 88.5	11.5	13	10	9	2	86	4
arc	2.8	98.4	1.6	347	256	0	0	93	7
oraex	1.5	5 17.7	82.3	2	33	82	0	17	2
dbf	2395.5	7.38	92.62	30.90	213.60	87	6	7	0
dbf11	201.4	1.5	98.5	237	256	94	4	1	0
redo	138.3	98.25	1.75	21	32	2	0	89	9
other	10.6	68.2	31.8	120.7	99.7	30	1	65	4

2017 Storage Developer Conference. © Virtual Instruments All Rights Reserved.

Importing a Data Workload

SD[®]

we x Workland Deta Importan	
ime > Workload Data Importer	
/orkload Data Import	
lect storage environment:	
pecify a Name for Your Import	
escription	
utipype in tags delimited by commas.	
ype in tags delimited by commas	
ype in tags delimited by commas	
VMAX truncated.csv (7 MB) load another file	
VMAX truncated.csv (7 MB) load another file	
VMAX truncated.csv (7 MB) load another file	()
Ag Hick VMAX truncated.csv (7 MB) load another file escribe Input Data Process log file using analysis policy: DCDirect Policy example	

23

2017 Storage Developer Conference. © Virtual Instruments All Rights Reserved.

Parsing the File

Home > Production Environments > Na	ame
Name	
Importing Log Data	Parsing Stop Parsing File
using analysis policy DCDirect Pol	
Elapsed	Approx. Remaining
00:30	00
Last Log Record: 02/19/2016 3:3	80:42 PM warning Failed to process row ["DATE", "INTERVAL(min)", "INSTAN View Log
Last Log Record: 02/19/2016 3:3 Access Pattern	30:42 PM warning Failed to process row ["DATE", "INTERVAL(min)", "INSTAN View Log
Access Pattern	
Access Pattern	View: All Acquired Dat
Access Pattern IOPs Latency Throughput 1.50	View: <u>Att Acquired Dat</u> IOPS
Access Pattern IOPs Latency Throughput 1.50	View: All Acquired Dat
Access Pattern IOPs Latency Throughput 1.50	View: <u>Att Acquired Dat</u> IOPS

24

Viewing the Results of the Import

Iysis Results	ponents View				(<u>*</u>)	
Throughput (MB) 397 Read: 280 Write: 117	iops 41k	Read: 26k Write: 15k	Latency (ms) 7.7k		Read: N/A Write: N/A	
Write 36.5N	Vrite Mix	¥		No data available.	*	
WILE 30.31		cad: 63.5%	1092			
Comma	and Mix	cad: 63.5%		age Request Size	•	

SD[®]

2017 Storage Developer Conference. © Virtual Instruments All Rights Reserved.

Workload Central Beta

- WorkloadCentral is a free cloud-based analytics platform and community that allows you to understand analyze, create and share workloads.
- Available at: www.workloadcentral.com
- Key Features:
 - □ Free workload analysis & creation
 - Advanced workload analytics
 - Workloads for validation, testing & benchmarking
- 2017 Storage Developer Conference. © Virtual Instruments All Rights Reserved.

Uploading Your Workload Data

Workloa	d Data Import			
ACME OPM Ap	P			
	cod for the ACME CRIM Apo. Apo is a PHP based p ig against EMCIO VMAX.	datform using Oracle <mark>RAC</mark> as the		
× EMC × V	MAX x Oracle x RAC x PHP			
Log File				Å
	weexport-for-idx.csv (2 ME)		25% X	

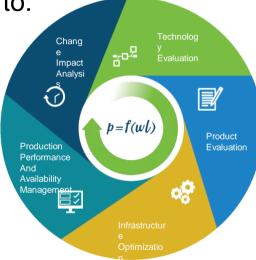
- □ The Workload Importer offers:
- Ability to upload data from any vendor or environment
- Out of the box import policies
- Analysis policies provide flexibility to define different workloads

Visualizing Your Data with the Workload Analyzer

- A free downloadable, printable report and dashboard that provides:
 - Workload access pattern
 - Workload behavior characteristics
 - Workload performance
 - Workload creation

2017 Storage Developer Conference. © Virtual Instruments All Rights Reserved.

Considerations for Other Testing Tools


- This method is designed for use with Load DynamiX Enterprise and the Load DynamiX appliances
- With other tools:
 - When testing using VMs, use the exact same OS version, Hypervisor Version, drivers and network configuration when comparing systems
 - Enable bursts!
 - Ensure that the Test OS/hypervisor and HBA Drivers all support manipulating queue depth and are set the same
 - Make sure to test with multiple profiles to accurately represent the application

Summary

□ This process enables vendors and customers to:

- Upload many workload types
- From multiple vendors
- Test using this data to:
 - Compare software versions
 - Compare products
 - Ensure apples-to-apples comparisons

Thank You

For more information:

peter.murray@virtualinstruments.com

www. virtualinstruments.com

