{
l"
, A
Il
/
- R L]
O SN
O O .//"
asas .
e -

STORAGE DEVELOPER CONFERENCE
SNIA © SANTA CLARA, 2017

RALPH BOHME, SERNET, SAMBA TEAM
UNDERSTANDING AND IMPROVING SAMBA FILESERVER PERFORMANCE

HOW | FELL IN LOVE WITH
SYSTEMIAP AND PERF

RALPH BOHME, SERNET, SAMBA TEAM 2 [b4 SAMBA FILESERVER PERFORMANCE

AGENDA

» Disclaimer: focus on userspace, not kernel, mostly Linux
» Linux tracing history tour de force

» perf

» Systemtap

» Samba fileserver performance improvements

SDC SerNet

RALPH BOHME, SERNET, SAMBA TEAM 3/ 44 SAMBA FILESERVER PERFORMANCE

AGENDA

KEY TAREAWAY...

SDG SAMBA SerNet

RALPH BOHME, SERNET, SAMBA TEAM b | bk SAMBA FILESERVER PERFORMANCE

INTRODUCTION

..LINUX TRACING HAS EVOLVED. ..

SDG SAMBA SerNet

RALPH BOHME, SERNET, SAMBA TEAM 9 [b4 SAMBA FILESERVER PERFORMANCE

INTRODUCTION

TRACING IN THE 20°S

SDG SAMBA SerNet

RALPH BOHME, SERNET, SAMBA TEAM 6 /44 SAMBA FILESERVER PERFORMANCE

INTRODUCTION

TRACING TODAY

ftrace perf_events

J
e
|
\ -
\
|

SystemTap
LA\

“ A Lw :l-f} ’

ktap dtracedlinux OEL DTrace sysdig

SDC SAMBA SerNet

RALPH BOHME, SERNET, SAMBA TEAM 7144 SAMBA FILESERVER PERFORMANCE

How do we
use these
superpowers?

taken from Brendan Greggs presentation Performance Analysis with bcc/BPF

SDC SerNet

RALPH BOHME, SERNET, SAMBA TEAM

INTRODUCTION

SDC

1990’s: Static tracers

2000: LTT + DProbes
2004: kprobes
2005: DTrace

2005: SystemTap
2005: LTTng

2008: ftrace

1

1]

8 /44

A LINUX TRACING TIMELINE

2009: perf_events

2009: Kernel tracepoints
2012: uprobes

2013: ktap

2014: sysdig

2014: eBPF

SerNet

SAMBA FILESERVER PERFORMANCE

RALPH BOHME, SERNET, SAMBA TEAM 9144 SAMBA FILESERVER PERFORMANCE

INTRODUCTION

What can be done:
» Counting CPU events: cycles, branch misses, frontline stalls, ...
» Trace syscalls, but more efficiently

» Trace at the source code level by symbol (function name) or line
number (both kernel and userspace)

» Provide stable tracepoint ABI (again kernel and userspace)
» Counting, statistics, latency, histograms...

» Some stuff (BPF, ftrace with hist-triggers, uprobes) requires newer
kernels so might not be present on older systems

SDC SerNet

RALPH BOHME, SERNET, SAMBA TEAM 10/ 44 SAMBA FILESERVER PERFORMANCE

INTRODUCTION: KERNEL FRAMEWORKS

The whole zoo uses a smaller set of common in-kernel tracing
frameworks:

1. Static tracepoints

2. Dynamic tracepoints: kprobes and uprobes

3. perf_events

4. BPF (previously also Enhanced BPF, aka eBPF)

All frameworks incur low overhead when enabled per tracepoint and
zero overhead when not enabled - except uprobes and USDT which take
a context switch when firing.

SDC SerNet

RALPH BOHME, SERNET, SAMBA TEAM 11144 SAMBA FILESERVER PERFORMANCE

INTRODUCTION: KERNEL FRAMEWORKS AND EVENT TYPES

The types of events are:

» CPU Hardware Events: CPU performance monitoring counters (PMU,
Performance Monitoring Unit), eg CPU cycles

» CPU Software Events: these are low level events based on kernel counters.
For example, CPU migrations, minor faults, major faults, branch misses etc.

» Tracepoint Events: This are static kernel-level (SDT) or user-level (USDT)
instrumentation points that are hardcoded in interesting and logical places
in the kernel or applications

» Dynamic Tracing: Software can be dynamically instrumented, creating
events in any location. For kernel software, this uses the kprobes
framework. For user-level software, uprobes.

» Timed Events: commonly used for profiling

SDC SerNet

RALPH BOHME, SERNET, SAMBA TEAM 12 | 44 SAMBA FILESERVER PERFORMANCE

INTRODUCTION

perf_events SystemTap

SDC SAMBA SerNet

RALPH BOHME, SERNET, SAMBA TEAM 13/ 44 SAMBA FILESERVER PERFORMANCE

INTRODUCTION

ftrace eBPF

SDC SAMBA SerNet

RALPH BOHME, SERNET, SAMBA TEAM 14 44 SAMBA FILESERVER PERFORMANCE

INTRODUCTION

BPF/bcc, the new kid on the block:
» BPF: (enhanced) Berkeley Packet Filter with, the kernel framework
» bcc: BPF compiler collection

» BPF originated as a technology for optimizing packet filters. If you
run tcpdump with an expression (matching on a host or port), it gets
compiled into optimal BPF bytecode which is executed by an in-
kernel sandboxed virtual machine

» Enhanced BPF (aka eBPF, but also just BPF) extended what this BPF
virtual machine could do: allowing it to run on events other than
packets, and do actions other than filtering

SDC SerNet

RALPH BOHME, SERNET, SAMBA TEAM 15/ 44 SAMBA FILESERVER PERFORMANCE

INTRODUCTION

ftrace

» It's been metioned as kernel hacker's best friend, built into the kernel
and can consume all the mentioned kernel tracing frameworks

» event tracing, with optional filters and arguments

» until very recently not programmable and no builtin statistics
support, changed with the addition of hist-triggers and BPF support

SDC SerNet

RALPH BOHME, SERNET, SAMBA TEAM 16 | 44 SAMBA FILESERVER PERFORMANCE

INTRODUCTION

How to choose? For userspace, like Samba:
» Recommendation: choose perf for CPU profiling
» Systemtap for all the rest

» Look at the others when something is missing (unlikely) or you feel
like it

» Keep an eye on BPF

SDC SerNet

RALPH BOHME, SERNET, SAMBA TEAM 18 / 44 SAMBA FILESERVER PERFORMANCE

PERF

» perf events: akernel subsystem(s) and a user-space tool
» Counting events & profiling with post-processing

» Not programmable and no builtin statistics and aggregations, though
this changed recently

» It can instrument CPU performance counters (PMU), tracepoints,
kprobes and uprobes

SDC SerNet

RALPH BOHME, SERNET, SAMBA TEAM 191 44 SAMBA FILESERVER PERFORMANCE

PERF: PROFILING

Linux profilers:

1. GNU gprof: requires special compilation

2. Valgrind Callgrind: slooooooooooooo000ow

3. oprofile, just didn't work in my environment so | looked at:

4, perf

SDC SerNet

RALPH BOHME, SERNET, SAMBA TEAM 20/ 44 SAMBA FILESERVER PERFORMANCE

PERF

» Where do you get it?

yum install perf
apt-get install linux-tools

» When profiling you will want symbols so also install *-debuginfo/
*.dbg package of profiled application

» perfcan do much more then profiling, but for me the key selling point
s the text-based interactive interface to display the profile info:

perf report

SDC SerNet

RALPH BOHME, SERNET, SAMBA TEAM 211 44 SAMBA FILESERVER PERFORMANCE

PERF TUI DEMO

DEMO

SDG SAMBA SerNet

SYSTEMIAP

RALPH BOHME, SERNET, SAMBA TEAM 23 | b SAMBA FILESERVER PERFORMANCE

SYSTEMTAP

» ,,SystemTap provides a simple command line interface and scripting
language for writing instrumentation for a live running kernel plus
user-space applications.”

» ,The essential idea behind ... systemtap ... is to name events, and to
give them handlers. Whenever a specified event occurs, the Linux
kernel runs the handler.

» You write the event handlers in the Systemtap script language which
is C like with type inference, but safe with builtin runtime safety
checks

SDC SerNet

RALPH BOHME, SERNET, SAMBA TEAM 24 | b SAMBA FILESERVER PERFORMANCE

SYSTEMTAP
» The script associates handlers with probes:
probe EVENT { HANDLER }
» Several varieties of supported events:
begin, end, timer, syscalls, tracepoints, DWARF, perf_events
» Handler can have filtering, conditionals, variables: primitive
(numbers, strings), associative arrays, in kernel statistical
aggregations
» Many helper functions: printf, gettimeofday, ...
» The scriptistranslatedto C
...continued on next slide...
SDC SerNet ..

RALPH BOHME, SERNET, SAMBA TEAM 23 | b SAMBA FILESERVER PERFORMANCE

SYSTEMTAP

...continued from previous slide...
» The C code is compiled to a kernel module

» The kernel loads the module and enables the probes, inserting jumps
(kernel) or breakpoints (userspace)

» with DWARF debug symbols you can place probes on
file.c:linenumber (kernel or user-space)

» Associative arrays, Statistics (aggregates)

» Probe handlers have access to execution context (variables,
parameters)

SDC SerNet

RALPH BOHME, SERNET, SAMBA TEAM 26 | bk SAMBA FILESERVER PERFORMANCE

SYSTEMTAP: LIST AVAILABLE STATIC PROBES

® @ Terminal — 100x30
=2
S # DWARF debug symbols
$ stap -1 'kernel.function("*")' | wc -1
54049

S # krobes, doesn't require debug symbols
$ stap -1 'kprobe.function("*")' | wc -1
43792

S # SDT, no debug symbols needed
$ stap -1 'kernel.trace("*")' | wc -1
2203

S # CPU PMU Hardware/Software
$ stap -1 'perf.*.*'" | wc -1
19

man stapprobes

SDC SAMBA SerNet

RALPH BOHME, SERNET, SAMBA TEAM 27 | b SAMBA FILESERVER PERFORMANCE

SYSTEMTAP EXAMPLE: HELLO WORLD

® © Terminal — 100x30

cat hello_world.stp
probe begin {
printf("Hello world!\n")

}

probe end {
printf("\nGoodbye!\n")

}

stap hello_world.stp
Hello world!

AC

Goodbye!

SDC SAMBA SerNet

RALPH BOHME, SERNET, SAMBA TEAM

SYSTEMTAP EXAMPLE: SYSCALL WITH STATISTICS

SDC

28 | 44

Terminal —100x30

SAMBA FILESERVER PERFORMANCE

cat pwrite.stp
global bytes_written

probe begin {

printf("Tracing, press ctrl-c to stop... ")

}

probe syscall.pwrite.return{
if(pid() == target())
bytes_written += Sreturn

}

probe end {

printf("\nTotal bytes written: %d\n", bytes_written)

}

stap -x 18113 pwrite.stp
Tracing, press ctrl-c to stop... *C
Total bytes written: 2825879

SAMBA

SerNet

RALPH BOHME, SERNET, SAMBA TEAM 27 | bk SAMBA FILESERVER PERFORMANCE

SYSTEMTAP EXAMPLE: USERSPACE FUNCTION, NEEDS DEBUG SYMBOLS

® @ Terminal — 100x30

cat smb2-reqgs.stp
global smb2_reqgs

probe begin {
printf("Tracing, press ctrl-c to stop... ")

}

probe process("/.../libsmbd-base-samba4.s0").function("smbd_smb2_request_dispatch")

{
if(pid() == target())
smb2_reqs++

}
probe end {
printf("\nGot %d SMB2 requests\n", smb2_reqs)
}
stap smb2-regs.stp
Tracing, press ctrl-c to stop... C

Got 7163 SMB2 requests

SDC SAMBA SerNet

RALPH BOHME, SERNET, SAMBA TEAM 30/ 44 SAMBA FILESERVER PERFORMANCE

SYSTEMTAP EXAMPLE: ADDING USING USDT PROBE TO SAMBA

® © Terminal — 100x30

commit 3caa363dcf4laed3c2e4486d9f77880c3bbl140f1
Author: Ralph Boehme <slow@samba.org>

s3/smbd: add instrumentation for SMB2 request

--- a/source3/smbd/smb2 _create.c
+++ b/source3/smbd/smb2 create.c

@@ -703,6 +705,8 @@ static void reprocess_blocked_smb2_lock(...)
if (!smb2req->subreq) {
return;

}

+ SAMBA_PROBE (smb2, request_start, 2, smb2req->smblreq->mid, SMB2_OP_LOCK)
SMBPROFILE_IOBYTES_ASYNC_SET_BUSY (smb2reqg->profile);

state = tevent_req_data(smb2reqg->subreq, struct smbd_smb2_lock_state);

SDC SAMBA SerNet

RALPH BOHME, SERNET, SAMBA TEAM 31/ 44

SYSTEMTAP: ANATOMY OF A USDT PROBE

® © Terminal — 100x30

SAMBA FILESERVER PERFORMANCE

commit cad76c44f6f88caad8ff92d2dea73al120d4e9b59
Author: Ralph Boehme <slow@samba.org>

libreplace: add Systemtap include wrapper

--- Jdev/null

+++ b/lib/replace/system/systemtap.h
@@ -0,0 +1,63 (@C

+#1ifdef HAVE_SYS_SDT_H

+#include <sys/sdt.h>

+#define SAMBA_PROBE (provider, probe, n, ...) \

-+

+#define SAMBA_PROBE_INTERNAL (provider, probe, n, ...) \
+ DTRACE_PROBE##n(provider, probe, ## __VA_ARGS__)
+

+#define DTRACE_PROBEO (provider, probe) \

I DTRACE_PROBE (provider, probe)

+

+#endif

SDC SAMBA

+ SAMBA_PROBE_INTERNAL (provider, probe, n, ## __VA_ARGS__)

SerNet

RALPH BOHME, SERNET, SAMBA TEAM 32| bk SAMBA FILESERVER PERFORMANCE

SYSTEMTAP EXAMPLE: USING USDT PROBE

® @ Terminal — 100x30

cat smb2-reqgs2.stp
global smb2_reqgs

probe begin {

printf("Tracing, press ctrl-c to stop... ")
¥
probe process("/.../libsmbd-base-samba4.so0").provider("smb2").mark("request_start")
1

if(pid() == target())
smb2_reqs++

¥
probe end {

printf("\nGot %d SMB2 requests\n", smb2_reqs)
¥

stap smb2-reqgs2.stp
Tracing, press ctrl-c to stop... "C
Got 8130 SMB2 requests

SDC SAMBA SerNet

RALPH BOHME, SERNET, SAMBA TEAM 33/ b SAMBA FILESERVER PERFORMANCE

SYSTEMTAP

While at it, let’s also add instrumentation to these:
1. tevent events

2. sending / receiving data from the network

3. disk 10

4, syscalls

5. smbd & ctdb communication latency

Let me introduce you to tsmbd:

SDC SerNet

RALPH BOHME, SERNET, SAMBA TEAM 34 | b SAMBA FILESERVER PERFORMANCE

SYSTEMTAP: TSMBD

® © Terminal — 100x30

examples/systemtap/tsmbd -h
Trace an smbd process with Systemtap

USAGE: tsmbd [-s|-d|-h] pid

pid # trace this process ID
-d # show distribution histograms
-h # print this help text

SDC SAMBA SerNet

RALPH BOHME, SERNET, SAMBA TEAM 33/ 4k SAMBA FILESERVER PERFORMANCE

SYSTEMTAP: TSMBD

® © Terminal — 100x30

examples/systemtap/tsmbd 11327
Compiling Systemtap script, this may take a while...
Collecting data, press ctrl-C to stop... ~C

SDC SAMBA SerNet

RALPH BOHME, SERNET, SAMBA TEAM

SYSTEMTAP: TSMBD

SDC

Terminal —100x 30

36/ 4k

SAMBA FILESERVER PERFORMANCE

examples/systemtap/tsmbd 11327

Compiling Systemtap script, this may take a while...

Collecting data, press ctrl-C to stop... ~C
Ran for: 38728 ms
Time waiting for events: 32029 ms
Time receiving SMB2 packets: 157 ms
Time running SMB2 requests: 3820 ms
Time sending SMB2 packets: 832 ms
Time waiting for ctdb: O ms
Time 1in syscalls: 2165 ms
Time in disk IO (read): 9 ms
Time in disk IO (write): 45 ms
Number of tevent events: 29407
Number of SMB2 requests: 26937
Number of ctdb requests: 0

SAHMBA

SerNet

RALPH BOHME, SERNET, SAMBA TEAM

SYSTEMTAP: TSMBD

SDC

37 bk

Terminal —100x30

SAMBA FILESERVER PERFORMANCE

...continued...

SMB2 Requests
SMB2_OP_CREATE
SMB2_OP_CLOSE
SMB2_OP_SETINFO
SMB2_OP_WRITE
SMB2_OP_GETINFO

ctdb Requests

Count
8295
8152
5297
2464
2729

Count

...continued on next page...

SAMBA

Total us
2516071
573601
258329
333957
125258

Total us

Avg us
303
70
483
135
45

Avg us

SerNet

Min us

65
19
19
62
34

Min us

Max us
13378
8218
8154
8246
8222

Max us

RALPH BOHME, SERNET, SAMBA TEAM 38 / b4 SAMBA FILESERVER PERFORMANCE

SYSTEMTAP: TSMBD SERVICE TIME HISTOGRAM

® @ Terminal — 100x30

...SMB2 request service time histogram (optional with tsmbd -d)...

SMB2_OP_CREATE distribution (microseconds)

value |[--------c-cmmmm e e e e e - - - count
16 0

32 0

64 |(@ 289
128 |@@@@ 846
256 |(@EEEEEREREREREREEEEEECERCEREREREEECEEEERCEREREREEEEEEECERLRERAEREEEEERERE 9315
512 48
1024 !
2048 Q]
4096 1
8192 2
16384 0
32768 0

SDC SAMBA SerNet

RALPH BOHME, SERNET, SAMBA TEAM 39 | 4k SAMBA FILESERVER PERFORMANCE

SYSTEMTAP: TSMBD

tsmbd summary:
» Nice and detailed high level overview, it's non-intrusive

» tsmbd is only 356 lines of code, much of that is just boilerplate stuff
for the probes

» Tracing too much details (like all syscalls) does have performance
impact due to context switching, we may have to make that an
option

» Another useful thing is to extend it to trace all SMB2 sessions,
currently only one selected by process pid

SDC SerNet

SMBL
PERFORMANCE
IMPROVEMENTS

RALPH BOHME, SERNET, SAMBA TEAM 411 b4 SAMBA FILESERVER PERFORMANCE

SAMBA PERFORMANCE IMPROVEMENTS

1. Clustered Samba: directory enumeration
2. Name mangling: new option ,mangled names = illegal®

3. Make use of struct smb_filename plumbing in the 4.5 VFS: avoid
redundant stats

4. GPFS VFS module improvements: avoid GPFS API calls to fetch
creation date

5. Internal messaging improvements: connection caching

6. Exclusive lease optimisations (Samba had this for oplocks but they
didn't make it into the lease area): check file handle before looking
into the leases database

SDC SerNet

RALPH BOHME, SERNET, SAMBA TEAM 42 | b4 SAMBA FILESERVER PERFORMANCE

SAMBA PERFORMANCE IMPROVEMENTS: RESULTS

Small file copy throughput:
» before: 136 files /s

» after: 151 files /s

» ~10% improvement by drilling into existing code with perf TUI

SDC SAMBA SerNet

RALPH BOHME, SERNET, SAMBA TEAM 43 | b4 SAMBA FILESERVER PERFORMANCE

LINKS

WIP Samba instrumentation git branch

Systemtap Beginners Guide

Systemtap Language Reference

Linux perf site by Brendan Gregg

BPF Compiler Collection

Flamegraphs

SDG SAMBA SerNet

https://git.samba.org/?p=slow/samba.git;a=shortlog;h=refs/heads/perf
https://sourceware.org/systemtap/SystemTap_Beginners_Guide/index.html
https://sourceware.org/systemtap/langref/langref.html
http://www.brendangregg.com/linuxperf.html
https://github.com/iovisor/bcc
http://www.brendangregg.com/flamegraphs.html

RALPH BOHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

THE END

THANKYOU!
QUESTIONS?

Ralph Bohme <slow@samba.org>

SDC SAMBA SerNet

