
HOW I FELL IN LOVE WITH
SYSTEMTAP AND PERF

RALPH BÖHME, SERNET, SAMBA TEAM

UNDERSTANDING AND IMPROVING SAMBA FILESERVER PERFORMANCE

▸ Disclaimer: focus on userspace, not kernel, mostly Linux

▸ Linux tracing history tour de force

▸ perf

▸ Systemtap

▸ Samba fileserver performance improvements

AGENDA

 / 442RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

AGENDA

 / 443RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

KEY TAKEAWAY...

...LINUX TRACING HAS EVOLVED…

 / 444RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

INTRODUCTION

INTRODUCTION

 / 445RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

/proc

 ^__^
 (oo)
 /-------`´
 / | ||
 * ||----||
 ^^ ^^

ptrace

TRACING IN THE 90’S

INTRODUCTION

 / 446RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

TRACING TODAY

 / 447RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

taken from Brendan Greggs presentation Performance Analysis with bcc/BPF

1990’s: Static tracers

2000: LTT + DProbes

2004: kprobes

2005: DTrace

2005: SystemTap

2005: LTTng

2008: ftrace

2009: perf_events

2009: Kernel tracepoints

2012: uprobes

2013: ktap

2014: sysdig

2014: eBPF

INTRODUCTION

 / 448RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

A LINUX TRACING TIMELINE

What can be done:

▸ Counting CPU events: cycles, branch misses, frontline stalls, ...

▸ Trace syscalls, but more efficiently

▸ Trace at the source code level by symbol (function name) or line
number (both kernel and userspace)

▸ Provide stable tracepoint ABI (again kernel and userspace)

▸ Counting, statistics, latency, histograms...

▸ Some stuff (BPF, ftrace with hist-triggers, uprobes) requires newer
kernels so might not be present on older systems

INTRODUCTION

 / 449RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

The whole zoo uses a smaller set of common in-kernel tracing
frameworks:

1. Static tracepoints

2. Dynamic tracepoints: kprobes and uprobes

3. perf_events

4. BPF (previously also Enhanced BPF, aka eBPF)

All frameworks incur low overhead when enabled per tracepoint and
zero overhead when not enabled – except uprobes and USDT which take
a context switch when firing.

INTRODUCTION: KERNEL FRAMEWORKS

 / 4410RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

The types of events are:

▸ CPU Hardware Events: CPU performance monitoring counters (PMU,
Performance Monitoring Unit), eg CPU cycles

▸ CPU Software Events: these are low level events based on kernel counters.
For example, CPU migrations, minor faults, major faults, branch misses etc.

▸ Tracepoint Events: This are static kernel-level (SDT) or user-level (USDT)
instrumentation points that are hardcoded in interesting and logical places
in the kernel or applications

▸ Dynamic Tracing: Software can be dynamically instrumented, creating
events in any location. For kernel software, this uses the kprobes
framework. For user-level software, uprobes.

▸ Timed Events: commonly used for profiling

INTRODUCTION: KERNEL FRAMEWORKS AND EVENT TYPES

 / 4411RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

INTRODUCTION

 / 4412RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

INTRODUCTION

 / 4413RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

BPF/bcc, the new kid on the block:

‣ BPF: (enhanced) Berkeley Packet Filter with, the kernel framework

‣ bcc: BPF compiler collection

‣ BPF originated as a technology for optimizing packet filters. If you
run tcpdump with an expression (matching on a host or port), it gets
compiled into optimal BPF bytecode which is executed by an in-
kernel sandboxed virtual machine

‣ Enhanced BPF (aka eBPF, but also just BPF) extended what this BPF
virtual machine could do: allowing it to run on events other than
packets, and do actions other than filtering

INTRODUCTION

 / 4414RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

ftrace

‣ It's been metioned as kernel hacker's best friend, built into the kernel
and can consume all the mentioned kernel tracing frameworks

‣ event tracing, with optional filters and arguments

‣ until very recently not programmable and no builtin statistics
support, changed with the addition of hist-triggers and BPF support

INTRODUCTION

 / 4415RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

How to choose? For userspace, like Samba:

‣ Recommendation: choose perf for CPU profiling

‣ Systemtap for all the rest

‣ Look at the others when something is missing (unlikely) or you feel
like it

‣ Keep an eye on BPF

INTRODUCTION

 / 4416RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

PERF

▸ perf_events: a kernel subsystem(s) and a user-space tool

▸ Counting events & profiling with post-processing

▸ Not programmable and no builtin statistics and aggregations, though
this changed recently

▸ It can instrument CPU performance counters (PMU), tracepoints,
kprobes and uprobes

 PERF

 / 4418RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

Linux profilers:

1. GNU gprof: requires special compilation

2. Valgrind Callgrind: sloooooooooooooooow

3. oprofile, just didn't work in my environment so I looked at:

4. perf

PERF: PROFILING

 / 4419RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

▸ Where do you get it? 
 
yum install perf 
apt-get install linux-tools

▸ When profiling you will want symbols so also install *-debuginfo/
*.dbg package of profiled application

▸ perf can do much more then profiling, but for me the key selling point
is the text-based interactive interface to display the profile info: 
 
perf report

 PERF

 / 4420RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

 PERF TUI DEMO

 / 4421RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

DEMO

SYSTEMTAP

▸ „SystemTap provides a simple command line interface and scripting
language for writing instrumentation for a live running kernel plus
user-space applications.“

▸ „The essential idea behind … systemtap … is to name events, and to
give them handlers. Whenever a specified event occurs, the Linux
kernel runs the handler.“

▸ You write the event handlers in the Systemtap script language which
is C like with type inference, but safe with builtin runtime safety
checks

SYSTEMTAP

 / 4423RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

▸ The script associates handlers with probes: 
probe EVENT { HANDLER }

▸ Several varieties of supported events: 
begin, end, timer, syscalls, tracepoints, DWARF, perf_events

▸ Handler can have filtering, conditionals, variables: primitive
(numbers, strings), associative arrays, in kernel statistical
aggregations

▸ Many helper functions: printf, gettimeofday, ...

▸ The script is translated to C

...continued on next slide...

SYSTEMTAP

 / 4424RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

...continued from previous slide...

▸ The C code is compiled to a kernel module

▸ The kernel loads the module and enables the probes, inserting jumps
(kernel) or breakpoints (userspace)

▸ with DWARF debug symbols you can place probes on
file.c:linenumber (kernel or user-space)

▸ Associative arrays, Statistics (aggregates)

▸ Probe handlers have access to execution context (variables,
parameters)

SYSTEMTAP

 / 4425RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

SYSTEMTAP: LIST AVAILABLE STATIC PROBES

 / 4426RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

$ # DWARF debug symbols
$ stap -l 'kernel.function("*")' | wc -l
54049

$ # krobes, doesn't require debug symbols  
$ stap -l 'kprobe.function("*")' | wc -l
43792

$ # SDT, no debug symbols needed 
$ stap -l 'kernel.trace("*")' | wc -l
2203

$ # CPU PMU Hardware/Software 
$ stap -l 'perf.*.*' | wc -l
19

man stapprobes

SYSTEMTAP EXAMPLE: HELLO WORLD

 / 4427RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

cat hello_world.stp
probe begin {
 printf("Hello world!\n")
}

probe end {
 printf("\nGoodbye!\n")
}

stap hello_world.stp
Hello world!
^C
Goodbye!

SYSTEMTAP EXAMPLE: SYSCALL WITH STATISTICS

 / 4428RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

cat pwrite.stp
global bytes_written

probe begin {
 printf("Tracing, press ctrl-c to stop... ")
}

probe syscall.pwrite.return{
 if(pid() == target())
 bytes_written += $return
}

probe end {
 printf("\nTotal bytes written: %d\n", bytes_written)
}

stap -x 18113 pwrite.stp
Tracing, press ctrl-c to stop... ^C
Total bytes written: 2825879

SYSTEMTAP EXAMPLE: USERSPACE FUNCTION, NEEDS DEBUG SYMBOLS

 / 4429RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

cat smb2-reqs.stp
global smb2_reqs

probe begin {
 printf("Tracing, press ctrl-c to stop... ")
}

probe process("/.../libsmbd-base-samba4.so").function("smbd_smb2_request_dispatch")
{
 if(pid() == target())
 smb2_reqs++
}

probe end {
 printf("\nGot %d SMB2 requests\n", smb2_reqs)
}
stap smb2-reqs.stp
Tracing, press ctrl-c to stop... ^C
Got 7163 SMB2 requests

SYSTEMTAP EXAMPLE: ADDING USING USDT PROBE TO SAMBA

 / 4430RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

commit 3caa363dcf41aed3c2e4486d9f77880c3bb140f1
Author: Ralph Boehme <slow@samba.org>
...
 s3/smbd: add instrumentation for SMB2 request
...
--- a/source3/smbd/smb2_create.c
+++ b/source3/smbd/smb2_create.c
...
@@ -703,6 +705,8 @@ static void reprocess_blocked_smb2_lock(...)
 if (!smb2req->subreq) {
 return;
 }
+
+ SAMBA_PROBE(smb2, request_start, 2, smb2req->smb1req->mid, SMB2_OP_LOCK);
 SMBPROFILE_IOBYTES_ASYNC_SET_BUSY(smb2req->profile);

 state = tevent_req_data(smb2req->subreq, struct smbd_smb2_lock_state);

SYSTEMTAP: ANATOMY OF A USDT PROBE

 / 4431RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

commit cad76c44f6f88caa08ff92d2dea73a120d4e9b59
Author: Ralph Boehme <slow@samba.org>
...
 libreplace: add Systemtap include wrapper
... 
--- /dev/null
+++ b/lib/replace/system/systemtap.h
@@ -0,0 +1,63 @@
+#ifdef HAVE_SYS_SDT_H
+#include <sys/sdt.h>
... 
+#define SAMBA_PROBE(provider, probe, n, ...) \
+ SAMBA_PROBE_INTERNAL(provider, probe, n, ## __VA_ARGS__)
+
+#define SAMBA_PROBE_INTERNAL(provider, probe, n, ...) \
+ DTRACE_PROBE##n(provider, probe, ## __VA_ARGS__)
+
+#define DTRACE_PROBE0(provider, probe) \
+ DTRACE_PROBE(provider, probe)
+ 
+#endif
...

SYSTEMTAP EXAMPLE: USING USDT PROBE

 / 4432RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

cat smb2-reqs2.stp
global smb2_reqs

probe begin {
 printf("Tracing, press ctrl-c to stop... ")
}

probe process("/.../libsmbd-base-samba4.so").provider("smb2").mark("request_start")
{
 if(pid() == target())
 smb2_reqs++
}

probe end {
 printf("\nGot %d SMB2 requests\n", smb2_reqs)
}

stap smb2-reqs2.stp
Tracing, press ctrl-c to stop... ^C
Got 8130 SMB2 requests

While at it, let’s also add instrumentation to these:

1. tevent events

2. sending / receiving data from the network

3. disk IO

4. syscalls

5. smbd ⟺ ctdb communication latency

Let me introduce you to tsmbd:

SYSTEMTAP

 / 4433RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

SYSTEMTAP: TSMBD

 / 4434RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

examples/systemtap/tsmbd -h
Trace an smbd process with Systemtap

USAGE: tsmbd [-s|—d|-h] pid

 pid # trace this process ID
 -d # show distribution histograms
 -h # print this help text
#

SYSTEMTAP: TSMBD

 / 4435RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

examples/systemtap/tsmbd 11327
Compiling Systemtap script, this may take a while...
Collecting data, press ctrl-C to stop... ^C

SYSTEMTAP: TSMBD

 / 4436RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

examples/systemtap/tsmbd 11327
Compiling Systemtap script, this may take a while...
Collecting data, press ctrl-C to stop... ^C

Ran for: 38728 ms

Time waiting for events: 32029 ms
Time receiving SMB2 packets: 157 ms
Time running SMB2 requests: 3820 ms
Time sending SMB2 packets: 832 ms
Time waiting for ctdb: 0 ms

Time in syscalls: 2165 ms
Time in disk IO (read): 9 ms
Time in disk IO (write): 45 ms

Number of tevent events: 29407
Number of SMB2 requests: 26937
Number of ctdb requests: 0

SYSTEMTAP: TSMBD

 / 4437RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

...continued... 

SMB2 Requests Count Total us Avg us Min us Max us
SMB2_OP_CREATE 8295 2516071 303 65 13378
SMB2_OP_CLOSE 8152 573601 70 19 8218
SMB2_OP_SETINFO 5297 258329 48 19 8154
SMB2_OP_WRITE 2464 333957 135 62 8246
SMB2_OP_GETINFO 2729 125258 45 34 8222

ctdb Requests Count Total us Avg us Min us Max us

...continued on next page...

SYSTEMTAP: TSMBD SERVICE TIME HISTOGRAM

 / 4438RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

...SMB2 request service time histogram (optional with tsmbd -d)... 

SMB2_OP_CREATE distribution (microseconds)
value |-- count
 16 | 0
 32 | 0
 64 |@ 289
 128 |@@@@ 846
 256 |@@@ 9315
 512 | 48
 1024 | 7
 2048 | 0
 4096 | 1
 8192 | 2
16384 | 0
32768 | 0
...

tsmbd summary:

‣ Nice and detailed high level overview, it's non-intrusive

‣ tsmbd is only 356 lines of code, much of that is just boilerplate stuff
for the probes

‣ Tracing too much details (like all syscalls) does have performance
impact due to context switching, we may have to make that an
option

‣ Another useful thing is to extend it to trace all SMB2 sessions,
currently only one selected by process pid

SYSTEMTAP: TSMBD

 / 4439RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

SMBD
PERFORMANCE
IMPROVEMENTS

1. Clustered Samba: directory enumeration

2. Name mangling: new option „mangled names = illegal“

3. Make use of struct smb_filename plumbing in the 4.5 VFS: avoid
redundant stats

4. GPFS VFS module improvements: avoid GPFS API calls to fetch
creation date

5. Internal messaging improvements: connection caching

6. Exclusive lease optimisations (Samba had this for oplocks but they
didn't make it into the lease area): check file handle before looking
into the leases database

SAMBA PERFORMANCE IMPROVEMENTS

 / 4441RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

Small file copy throughput:

▸ before: 136 files / s

▸ after: 151 files / s

▸ ~10% improvement by drilling into existing code with perf TUI

SAMBA PERFORMANCE IMPROVEMENTS: RESULTS

 / 4442RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

WIP Samba instrumentation git branch

Systemtap Beginners Guide

Systemtap Language Reference

Linux perf site by Brendan Gregg

BPF Compiler Collection

Flamegraphs

LINKS

 / 4443RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

https://git.samba.org/?p=slow/samba.git;a=shortlog;h=refs/heads/perf
https://sourceware.org/systemtap/SystemTap_Beginners_Guide/index.html
https://sourceware.org/systemtap/langref/langref.html
http://www.brendangregg.com/linuxperf.html
https://github.com/iovisor/bcc
http://www.brendangregg.com/flamegraphs.html

THANK YOU!
QUESTIONS?

THE END

RALPH BÖHME, SERNET, SAMBA TEAM SAMBA FILESERVER PERFORMANCE

Ralph Böhme <slow@samba.org>

